
	 021	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 7 / NUMBER 2 / 2019

Rethinking Adaptive Building 
Skins from a Life Cycle 
Assessment perspective

Manuela Crespi1, Sandra G. L. Persiani*2

*	 Corresponding author
1	 University La Sapienza, Department of Planning, Design, and Technology of Architecture, Italy
2	 Technical University of Munich, Department of Architecture, Germany, sandra.persiani@tum.de

Abstract 
Adaptive building technologies have opened up a growing field of research aimed at ensuring indoor comfort while reducing energy 
consumption in buildings. By focusing on flexibility over short timeframes, these new technologies are, however, rarely designed for 
sustainability over their entire lifecycle. This paper aims to address an information gap between the research field of architectural Life 
Cycle Assessment (LCA) and the state of the art of adaptive façades, by presenting an analysis of the main aspects in traditional and 
adaptive façades that are relevant to understanding whether parallels can be drawn between available LCA databases.

The literature is reviewed following an inductive method based on a qualitative data collection aimed at answering a list of research 
questions, and a deductive method starting from the descriptions of adaptive building envelopes. The findings highlight four main 
points: i) where and how adaptivity is integrated, ii) the design targets that are able to reduce the environmental impact, iii) the impor-
tance of a qualitative as well as a quantitative LCA of the technology, and iv) lists a number of knowledge gaps currently limiting the 
diffusion of LCA as a design and verification tool in Adaptive Building Skins.
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1	 INTRODUCTION

The building sector is the largest consumer of energy, accounting for over one-third of final 

energy consumption and carbon dioxide (CO2) emissions globally. According to the European 

Commission, the energy use during the active life of the buildings in Europe is responsible for 

approximately 40% of energy consumption and 36% of CO2 emissions. In order to address these 

issues, research in the building sector has mainly focused on maximising the supply of energy from 

renewable sources and reducing the operational energy consumption in buildings’ life cycle by 

massively integrating low-energy building technologies and systems (IEA, 2013). 

The concept of ‘energy’ in buildings has often been used in referring to ‘operational energy’ (OE), 

while largely disregarding embodied energy (EE) or embodied carbon (EC). This encompasses initial, 

recurring, and demolition embodied energies (Azari & Abbasabadi, 2018). Although it is true that in 

many conventional buildings OE represents a relatively larger proportion of the life cycle energy (OE 

80-90% compared to EE 10-20%) the rates vary depending on the building type (in an adobe/clay 

residential building the rate is closer to OE 66% - EE 33%) (Dixit, Culp, & Fernández-Solís, 2013; 

Ramesh, Prakash, & Shukla, 2010). The need to consider the complete life cycle of the building is 

therefore significant, especially since the amount of embodied energy is expected to grow with the 

rising number of low energy buildings that reduce their OE at the expense of an increase in their 

EE by integrating active and passive technologies and building systems (thicker envelopes, shading 

devices, etc.) (Azari & Abbasabadi 2018; Dixit, Culp, & Fernández-Solís 2013).

It is mainly in answer to the demands for optimisation of operational energy in buildings that 

the field of architectural façades has developed a great variety of technological solutions that 

advocate for higher comfort conditions while reducing energy use. Much of the technological 

research on adaptive building envelopes or skins (ABS) is centred on developing flexibility of the 

building surfaces within the timeframes of the human activity cycle, ranging from interactive 

systems reacting within seconds to seasonal adaptations changing the building skin over a range 

of months. As most building technologies, ABSs rarely take into consideration other aspects 

than the energy efficiency or the user comfort, reflecting only a very partial view of the system’s 

real sustainability. Therefore, if the aim of adaptive building technologies truly is to improve on 

the sustainability of the built environment, ABSs need to be designed and contextualised within 

the broader framework of a complete Life Cycle Assessment (LCA), evaluating the technologies 

throughout all building LCA stages, as defined by the European Standard EN 15804:2012 (Table 1).  

This paper takes a further step towards the integration of LCA principles in the design of ABSs 

by reviewing the differences between adaptive and traditional façades, highlighting information 

gaps and focusing on aspects regarding architectural Life Cycle Assessment which are mostly 

not considered in the ABS research field. The study is based on an analysis of the state of the art 

of adaptive façades and integrates definitions and classifications with insights on the possible 

environmental impacts involved, setting the bases for a Life Cycle Inventory. The aim is to give a 

more comprehensive understanding of the function and the assembly of materials and technological 

parts of the building skin, but also of the effects each design choice has throughout the phases 

in the life cycle, and by extension, its impact on the environment. The outcomes integrate the 

previously mapped framework by Crespi, Persiani, and Battisti (2017), preparing for a complete 

LCA system for ABSs.
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Production stage (A1-A3)

(A1) Raw material supply, including processing of secondary material input

(A2) Transport of raw material and secondary material to the manufacturer

(A3) Manufacture of the product, and all upstream processes from cradle to gate

Construction stage (A4-A5)

(A4) Transport of the products to the building site

(A5) Installation/construction (of the product)

Use stage (related to the product) (B1-B5)

(B1) Use of the product

(B2) Maintenance of the product

(B3) Repair of the product

(B4) Replacement of the product

(B5) Refurbishment of the product

Use stage (related to operation) (B6-B7)

(B6) Operational energy use

(B7) Operational water use (not relevant for ABS)

End of life (C1-C4)

(C1) Demolition (/disassembly) of the product

(C2) Transport of the waste to waste processing facility

(C3) Waste processing operations for reuse, recovery, recycling

(C4) Final disposal of end-of-life product

Benefits and loads beyond the product’s boundary

(D)  Reuse/ recovery/ recycling potential evaluated as net impacts and benefits

Table 1  Building LCA stages according to (EN 15804:2012)

2	 LITERATURE REVIEW

Existing classifications of adaptive building envelopes are broadly recognised to be partial and 

few (Loonen,Trčka, Cóstola, & Hensen, 2013; Loonen et al., 2015; Luible et al., 2015; Sachin, 2016). 

In order to provide an inclusive review and directly address the aspects relating to LCA, the research 

is structured according to the method of data analysis of the 5 Ws (Creswell, 1998), aimed to identify 

basic questions that are relevant to the topic for information gathering and problem solving (Who, 

What, Where, When, Why, How). With the overview of the ABS classification systems taken as a base, 

the study proceeds to redefine ABSs from an LCA perspective by answering the research questions 

in Table 2. Questions Who and Why are answered by the body of the paper and are therefore 

not further developed.
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ABS ABS IN TERMS OF LCA LCA STAGES INVOLVED1

What?

1. �What is commonly 
defined as an ABS? 

2. �What are ABSs in terms 
of LCA?

- �Which parts compose an ABS and how are these 
assembled? (Fig. 2)

A1-A3 Production stage 
B6 Operational energy use
C3 Waste processing
C4 Final disposal, end of life
D Reuse/ recovery/ recycling potential

-.�How are distinctions adaptive/static, active/passive 
relevant in LCA?

Where?

3. �At which component 
level, and where in the 
façade are adaptive 
proprieties integrated?

- �Which are the most common ABS technologies and 
materials? (Fig. 3)

A3 Manufacturing
A4-A5 Construction stage 
B2-B4 Use stage 
C1 De-construction demolition
D Reuse/ recovery/ recycling potential

- �At which scale of the building skin is adaptivity 
integrated?

- �Are users involved in the operation of the technology?

A3 Manufacturing
A4-A5 Construction stage 
B2-B4 Use stage 
B6 Operational energy use
C1 De-construction demolition

How?

4. �How does the adaptation 
work? (Fig. 4, Fig.5)

A1-A3 Production stage 
B2-B4 Use stage 
B6 Operational energy use

When?

5. �Within which timeframe 
do adaptive processes 
occur?

- �What impact does the timing of adaptation have on 
LCA? (Fig. 6)

B2-B5 Use stage 
B6 Operational energy use
C1-C4 End of life 

- �How can adaptive processes be assessed for an LCA? B6 Operational energy use

1	 Life cycle stages according to the European Standards EN 15804 (2012) (Refer to Table 1).

Table 2  ‘Ws’ research questions
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Within which timeframe do 
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Why is it important to investigate 
and produce ABS?

Fig. 4
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Fig. 2

Fig. 4 Fig. 5

Fig. 6 CS

Fig. 1  General mapping of the LCA process and parameters for ABSs (from Crespi et al., 2017), with the layout of how Figs. 2-6 in 
this paper can be included in the mapping.
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The main aspects characterising ABSs in an LCA perspective are summed up in five infographic 

representations (Figs. 2 - 6), that can be further included in the mapping framework (Fig. 1).

  2.1	 DATA COLLECTION

Data collection was conducted by reviewing databases such as ScienceDirect, Scopus, and 

ResearchGate. Among the keywords searched were: adaptive, innovative, dynamic, responsive, 

climate, building envelope, façade components, building shells, building skins, LCA, materials, and 

photovoltaic. The academic literature was reviewed following two main paths:

–– an inductive method based on a qualitative data collection aimed at answering 

the research questions;

–– a deductive method starting from the aforementioned descriptions of adaptive building envelopes.

In a first step, a broad range of academic publications were selected based on the innovative 

technologies introduced in the building envelope. Although not directly mentioning ‘Adaptive 

Building Skins’, these allowed for the incorporation of a great number of technological solutions 

that are effectively employed in ABSs, such as photovoltaic systems, which are among the most 

widespread technologies in active façades. The importance of identifying a method of classification 

used for existing envelopes’ products lies in the possibility of highlighting shortcuts to available 

information on substances’ emission data to be further employed in future Life Cycle Inventories for 

ABSs (such as the Ecoinvent database, 2007), without needing to reconstruct the emissions path due 

to the individual production processes of the materials making up the product.

In a second step, the research focused on the more recent findings on adaptive façades, examining 

only literature published after 2012. The literature was classified by topic, terminology, and 

methodological approach used (Technological, Life Cycle, Systematic, Biomimetic). The outcomes are 

summarised in the annexes. This approach helped to identify the many nuances the concept of ABS 

spans, not necessarily related to specific technological solutions.

  2.2	 STATE OF THE ART REVIEW

The study of the existing literature on adaptive façades reveals a very broad understanding of these 

technologies, although, in many cases, ’adaptiveness’ is not directly mentioned. Definitions and 

classifications reveal the recurring features and characters typical of ABSs that are important to 

take into consideration within the LCA. Existing and emerging building skin technologies have been 

classified, of which two main aspects were identified:

–– A classification of the physical features (Tucci, 2012), with innovative materials to building parts 

categorised according to behaviour (active/passive) and appearance (opaque, semi-transparent, 

translucent, transparent). 

–– A classification of the functional behaviour (Loonen et al., 2015 & 2013) listing eight basic criteria for 

façade adaptivity: goal, responsive function, operation, technologies (materials & systems), response 

time, spatial scale, visibility, and degree of adaptability.

The annexes give a further overview of how the collected literature has addressed the evolution of 

building envelopes through a technological, biomimetic, or systematic approach. The multiplicity 
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of approaches is indicative of the interdisciplinary nature of the topic and the broad category of 

technologies employed in ABS.

Emerging technologies identified by the literature review (detailed list in annexes) require further 

integration in ABS inventories to enable a further mapping in terms of LCA. These can be subdivided 

into three macro-families:

1	 Façades that integrate renewables, from solar façades (Quesada, Rousse, Dutil, Badache, & Hallé, 

2012a &b), solar cooling (Prieto, Knaack, Auer, & Klein, 2017), Building Integrated Solar Thermal 

(BIST) technologies (Zhang et al., 2015), and dynamic Building Integrated PhotoVoltaic systems (BIPV) 

(Jayathissa, Jansen, Heeren, Nagy, & Schlueter, 2016; Curpek & Hraska, 2017).

2	 Active building envelopes, integrating smart glasses and motor-based shading devices (Sachin, 

2016), robotic materials that combine sensing and controlling features (McEvoy & Correll, 2015), 

IOT sensor network systems and the several devices associated with them (e.g. sensors, actuators, 

controllers) (Konis & Selkowitz, 2017). 

3	 Passive stimuli responsive materials and components. Although being mostly at an experimental 

stage, these elements are considered to be of strategic importance for the coming generation of 

ABS. Examples are hygromorphic materials, Phase Change Material (PCM)-based mortars (Curpek & 

Hraska, 2017; Koláček, Charvátová, & Sehnálek, 2017), self-shading building tiles with shape memory 

polymers, etc. (among others Aresta, 2017; Bridgens, Holstov, & Farmer, 2017; Clifford et al., 2017; Mao 

et al., 2016; Persiani, Molter, Aresta, & Klein, 2016b; Ribeiro Silveira, Louter, Eigenraam, & Klein, 2017). 

With such a broad variety of technologies and functions characterising adaptive building envelopes, 

it is understandable that many sibling concepts are used to describe adaptive systems. Adaptive 

Building Skins are described from a systematic point of view as sets of interacting parts with specific 

multiple functions, behaviours, and goals. The most diffused way to distinguish between types and 

categories of adaptive envelopes, however, is to identify their purpose and the dynamic behaviour of 

the components. Climate Adaptive Building Shells (CABS), for instance, address more specifically the 

energy efficiency and performance of the building envelope (Loonen et al., 2013).

The review also highlighted further directions for developing ABSs in terms of sustainability.

–– A number of studies were reviewed where the generation of design concepts is tackled through 

a biomimetic problem-solving methodology (Wang, Beltrán, & Kim, 2012; Persiani, Battisti, & 

Wolf, 2016; Badarnah, 2012, 2016, 2017). From an LCA point of view, investigating the relation 

Environmental agents – means of adaptation – Building functions – Operation of the technology – 

LCA can create a systematic design-oriented framework open to innovative and creative concepts. 

These concepts have been introduced in the early design phases in previous research through a 

preliminary (simplified) systematic LCA mapping (Crespi, Persiani, & Battisti, 2017). The framework, 

built on a method for the design and construction of integral façades, aims to enable decision-

making in the early design phases of adaptive envelopes and introduces LCA optimisation through 

an evolutionary design method with a multi-objective solution finding.

–– A new methodology which is widely recognised as a reliable means of data acquisition, information 

feedback, and a solid base for decision making in the context of sustainable design and LCA is 

Building Information Modelling (BIM). The model enables cross referencing of graphic and numerical 

information of the building and its parts, allowing not only the system to be controlled during its 

design and construction phase, but also allows it to be managed throughout its complete lifecycle 

(Soust-Verdaguer, Llatas, & García-Martínez, 2017; Volk, Stengel, & Schultmann, 2014).
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–– Research reveals that no single mitigation strategy alone can tackle the problem of transiting to 

a low-carbon built environment. A pluralistic approach is absolutely necessary, combining better 

design, the use of low-Embedded Carbon (EC), and reuse of high-EC materials together with stronger 

policy drivers (Pomponi & Moncaster, 2016).  

The State-of-the-Art review underlines four topics of importance for ABS in terms of LCA:

–– Different classifications of ABSs and ABS technologies, highlighting possible shortcuts to 

available information on substances’ emission data to be further employed in future Life Cycle 

Inventories for ABS;

–– A list of emerging technologies to be further integrated in ABS inventories and mapping of 

ABS in terms of LCA;

–– Commonly shared definitions of ABS;

–– Directions for further development: the biomimetic approach, integration of information through BIM, 

and a pluralistic approach.

What appears to be missing in the State of the Art is the implementation, comparison, and alignment 

of the terminology of building products with those in BIM libraries and standards. This would allow a 

shared base of understanding through the different design and simulation software, from design to 

facility management, and greatly facilitates the LCA process. 

3	 ADAPTIVE BUILDING SKINS FROM AN LCA PERSPECTIVE

In order to describe which aspects are relevant for ABS in terms of LCA in a straightforward way, the 

study is structured through thirteen research questions listed in Table 2.

  3.1	 WHAT IS COMMONLY DEFINED AS AN ADAPTIVE BUILDING SKIN?

Adaptive façades, or adaptive building envelopes, is a general term used to refer to a new generation 

of multifunctional façade systems that are able to change their function, features, or behaviour over 

time in response to transient performance requirements and boundary conditions with the aim 

of improving the overall building performance (COST Action TU1403, 2018; Persiani et al., 2016a). 

This emerging research area can be found at the crossroads between environmental architecture, 

building technologies, and artificial intelligence. As in all emerging fields, the first stages are 

characterised by an non-uniform variety of terms and definitions with analogous meanings. Adaptive 

Building Skins (ABS), Climate Adaptive Building Shells (CABS), Adaptive Façades, Autoreactive 

Façades, and Acclimated Kinetic building Envelope (AKE) are just a few of the many sibling concepts 

that can be found in the current State of Art. These terms describe variations of entities within the 

same family of technologies with a common ‘blueprint concept’, highlighting and focusing on some 

aspects more than others.

There are four definitions of ABS indicated in the reviewed studies (Wang et al. 2012; Badarnah, 

2012; Loonen et al., 2013; Persiani et al., 2016a). While the wording has evolved over time, the core 

of the concept is mostly shared. The definition focuses on goals and performances to be achieved 

in a responsive way by the building envelope, which is described of as a system of parts. Physical 

characteristics or technological solutions are not mentioned, although built examples are given in 
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some cases. The aesthetics of the movement are not considered central to the definition, its potential 

to involve the users and raise awareness with a positive impact on behaviour is however widely 

recognised. This approach is shared for the purpose of this research, as it gives the opportunity for 

façade designers to have unlimited creative boundaries inside a systematic framework driven by 

specific performance goals and dynamic behaviours. 

  3.2	 WHAT ARE ABSs IN TERMS OF LCA?

As mentioned previously, ABSs enable dynamic responses to changing environmental conditions, 

boosting indoor comfort and energy performances in the Operation stage (B6) but should also contain 

environmental impacts in the other life cycle phases, such as Production, Use of the product (B1), 

Maintenance (B2-B4), Refurbishment (B5), and End of Life (C1-C4), in order to fully justify their use.  

On the one hand, LCA is a means to measure the real impact of ABSs on the environment, and on 

the other hand it is a tool to optimise its design, initiating a cycle of experimentation and verification 

(Table 3). Among many objectives, an LCA identifies opportunities to improve the environmental 

performance of products at various points in their life cycle (ISO 14040 & 14044 2006). Adaptive 

Building Skins can therefore be redefined in the broader perspective of the entire life cycle where 

‘adaptivity’ assumes a broader meaning, involving the conservation of natural resources and the 

reduction of pollution.

DESIGN TARGET REDUCES IMPACT ON LCA PHASE

Use low-EC materials A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4

Use of local materials X X X X

Use renewable materials X X X

Use of materials with low 
processing energy

X X

Include waste, by-products, 
and used materials

X X X X

Design for disassembly A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4

Enable re-use and recovery 
of materials (especially of 
EE/EC materials)

X X X X X X

Enable refurbishment of 
existing structures extend-
ing the product’s life

X X X X X X X X

Develop more efficient 
construction processes / 
techniques

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4

Increased use of prefab-
ricated elements/off-site 
manufacturing

X X X X X X X X

Prefabricate bigger parts of 
the façade 

X X X

Design for autoreactivity A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4

Enable operation at zero 
energy

X X

Dynamics are embedded in 
the material, reducing the 
number of parts 

X X X X X X X X X X

Table 3  Design targets to reduce the impact on different phases of the LCA
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Adaptive building envelopes are multifunctional façade systems able to change their features or 

behaviour over time in response to transient performance requirements and boundary conditions, 

with the aim of improving the overall performance of the building, while contributing to the 

reduction of the environmental impacts in all the phases of the building’s life.

As previously pointed out, ABSs are strongly focused on energy efficiency in the operational 

energy use phase (B6). For a full LCA approach, it is necessary to identify and evaluate which among 

the commonly adopted technologies, components, and materials can have a significant impact on the 

other phases in the life cycle. High-tech components for instance typically have a shorter lifecycle 

than that of the building and become obsolete increasingly quickly as newer products are developed, 

with the common side effect of a higher impact on the production (A1-A3) and maintenance phases 

(B2-B4) of the system.

When designing new ABS technologies, the main variations on LCA impacts can be expected in the 

following phases (see also Table 3):

–– Production phase (A1-A3), due to use of resources to produce specific components, 

elements and materials, rising complexity and use of high-tech materials to achieve kinetic 

façade components, etc. 

–– Construction phase (A4-A5), depending on the effectiveness of the assembly (and disassembly) of the 

product, construction times, and resources can be reduced.

–– Maintenance, Repair, and Replacement phases (B2, B3, B4) and the End of Life phase (C1-C4) can be 

strongly impacted through designing for disassembly (especially of interest for the replacement of 

kinetic parts in ABSs).

–– Benefits and loads in the phase of Reuse/ recovery/ recycling (D) are mainly considered beyond 

the product’s boundaries, as it enters another system’s life cycle when integrated under any 

of the three forms. 
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  3.2.1	 Which parts compose an ABS and how are these assembled?

I- mullions

hinges

brackets

shading
actuator

I-mullions

Unitized curtain wall
Super-component

Adaptive facade
Building part

Glazing system
Component

Shading system
Component

Glazing system
Component Sub-component

Windows

I-mullions

I-mullions

WINDOWS

( Commercial materials + elements)
Sub-component

(+ Standard materials)

rubber 
gaskets

chain actuator

IGU

brackets

Insulated Glass Unit (IGU)
Element

aluminium spacers
silicone

plate glass

plate glass

(Standard materials +
commercial materials)

Shading system
Component Sub-component

Shading panels (+ Standard materials)

SHADING PANELS

Shading panel
(Commercial materials)

Element

From building part to components

From component to elements

From component to elements

Fig. 2  Study of a hierarchical disassembly of a basic façade unit composed of glazing and dynamic shading (based on Klein, 
2013). LCA stages involved: (A3-5), (B2-4), (C1), (D).

  3.2.2	 How are distinctions adaptive/static, active/passive relevant in LCA?

There are fundamental differences between active and kinetic, adaptive and static systems. ‘Active’ 

and ‘passive’ refer to the energy requirements of the technology: while an active system is powered 
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though an input of energy (mainly electrical), a passive system uses the latent energy from its 

surroundings (as for thermal Phase Change Materials) (Persiani et al., 2016a). ‘Adaptive’ and ‘static’ 

refer to the physical capacity of the material or the technology to change in determinate conditions. 

Because of the tendency to design increasingly complex façade systems, the boundaries between 

active and passive systems slowly disappear: adaptive properties are no longer characteristic of 

active systems, as latent energy reaction can now also be enabled in passive systems (Persiani et al., 

2016b). In an LCA, these characters need to be considered, including stratigraphic façade solutions 

(like shaded double-glazing systems) and spatial structures with climate-regulating purposes (like 

greenhouses), which may reduce the impacts in the production phase (A1-A3).

  3.3	 AT WHICH COMPONENT LEVEL, AND WHERE IN THE 
FAÇADE ARE ADAPTIVE PROPERTIES INTEGRATED?

A great variety of aspects in an LCA depend on the hierarchy of the parts in the ABS, on the assembly 

methods and above all, the wear of elements or components. A designer aware of these processes 

can effectively have an impact on:

–– Controlling at which stage in the production chain the manufacture and assembly takes place (in 

factory / on site), with the related impacts;

–– Design disassembly to reduce impacts in the Use stage (B2-B4), simplify maintenance and repair, 

avoiding the replacement of a whole when only part is damaged;

–– Design disassembly for deconstruction (C1), maximising the possibility of reuse, recycling, and 

separate materials that need special disposal.

Static envelopes are also included in this framework (traditional passive spatial solutions in Fig. 3), 

being the technical base for many technologies. These can be implemented with adaptive elements, 

components, or materials, and can be used as reference for future solutions. The main purpose with 

identifying these solutions is to highlight the presence of elements with a substantial impact on the 

production and maintenance phase.

  3.3.1	 Which are the most common ABS technologies and materials?

Technologies. The most commonly used technologies are different types of glazed components 

with shading systems (C1 - C3) that may also include elements with controlled solar light and heat 

transmittance (such as chromogenic E1 - E3).

Mechanical ventilation systems can be found in some static and dynamic building façade 

technologies (Building Part - BP2) as well as energy generating components (BP3, BP4, BP7, BP8, 

BP9). A new trend is represented by Building Integrated solar cooling technologies (BP10), where 

the cooling system, integrated in the façade, also generates energy through solar electrical or solar 

thermal processes. The cooling generation principles are several (thermoelectric cooling, absorption 

cycle, indirect evaporation, vapour compression) and the transfer medium can be either solid-based, 

water-based, or air-based. The delivery systems, depending on the medium, are radiative walls, 

mounted pipes, induction units, diffusers, or may be absent. In this case, ABSs include HVAC systems 

and the Life Cycle impact might be consistent.
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Fig. 3  Systematic illustration of the typologies of ABSs, with classified the most widespread technologies and materials 
(classification from the Ökobaudat database). LCA stages involved (A1-3), (B6), (C3-4), (D).

Material innovation in construction depends, to a large degree, on technological improvements 

in other manufacturing sectors (such as medical or communications). A number of reviewed 

publications list new materials used in the context of adaptive façades (refer to the literature review 

in the annexes). During the production phase of the envelope, the most used materials are glass, 

aluminium, and inorganic polymers for films and textiles, of which the energy embodied in the 

manufacturing process is hardly ever taken into consideration. However, in 2017, an Environmental 

Product Declaration (EPD) on an ETFE-based cladding system was published, showing growing 

concern and interest of stakeholders for environmental issues (Maywald, 2017).
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At the current rate of technological development grow rapidly obsolete, the long-term sustainability 

of specific high-tech solutions becomes challenging with respect to both the Production phase 

(A1-A3) and to the End of life scenarios (C1-C4). Adaptive materials (EM1 - EM4) for instance, are 

able to change their physical features in reaction to the action of external agents (humidity, heat, 

radiance, etc.). These are mostly under development for the field of building technologies, with few 

exceptions (as PCM, that are already available on the market). The category is expected to grow 

increasingly wider, adding on new technologies making use of them. In order to fully evaluate the 

sustainability of these materials and technologies more specific LCA studies are needed.

  3.3.2	 At which scale of the building skin is adaptivity integrated?

Adaptivity can be manifested either at material or at component scale. Designing for disassembly 

allows the adaptive parts to be easily removed and replaced, benefitting the life cycle of 

the whole façade as:

–– adaptive parts tend to become worn out more quickly when compared to static solutions, because of 

their changing characters (as for kinetic adaptivity). Moreover, the duration and resistance of these 

new materials has not been tested over many years of use;

–– technologies grow obsolete increasingly quickly, and disassembly allows adaptive materials or parts 

to be replaced with more advanced solutions without changing the whole façade system. 

So far, major innovations on adaptivity have been developing at material scale, followed by a few 

categories of elements and components such as chromogenic glasses and shading devices that have 

existed for many years on the market.

  3.3.3	 Are users involved in the operation of the technology?

The possibility of users directly interacting with the functioning and the dynamics of ABSs 

introduces the question of whether the LCA should address the Operational energy use (B6) from 

a qualitative or a quantitative point of view. As comfort is a very subjective matter, it is difficult to 

achieve optimal conditions that satisfy all users. From a qualitative point of view, users are therefore 

often enabled to intervene and bypass the system (e.g. opening the windows for ventilation). 

On the other hand, when users are allowed to override the set conditions, the quantification of 

energy consumption (lighting and HVAC) becomes difficult to control and is likely to rise. Building 

automated domotic monitoring systems have been suggested as high-tech solutions, that are 

however difficult to evaluate from an LCA point of view, as the system is tailored to the users and the 

potential variations are infinite.

Distinctions between transparent and opaque elements can give additional information on the 

performance, as a common low-tech way to introduce adaptivity is through visual and thermal 

permeability. The increased daylighting and thermal performance have a varying range of 

energy efficiency, which very much depends on use.
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  3.4	 HOW DOES THE ADAPTATION WORK?

ABSs are programmed to adapt to surrounding environmental conditions and transfer energy in 

different forms (radiant, kinetic, potential) to achieve human comfort requirements. The great 

majority of ABSs are actuated through systems of sensors that analyse the surrounding conditions, 

communicating with a control unit that takes simple decisions and orders counter-actions. To these 

systems belong HVAC technologies and active building systems. 
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Fig. 4  Systematic illustration of the typologies of ABS through the possible variations in adaptivity (adapted from Konis & 
Selkowitz, 2017; Loonen et al., 2013; Loonen et al., 2015; Persiani et al., 2016a). LCA stages involved (A1-3), (B2-4), (B6)..
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Research goals are generally aimed at improving ABS effectiveness by reducing uncontrolled 

user behaviour and energy (HVAC, lighting, and plug loads) through the integration of smart 

materials and systems. In continuous dynamic skins, users’ interaction is often enabled through an 

Energy Management and Control System (EMCS), which on one hand aims to optimise but on the 

other adds up to the energy consumption during the usage phase being an active system.

Developing trends are energy-generating kinetic devices (as dynamic PV sub-components) and 

unpowered kinetic features that are however still in a prototyping phase (Persiani et al., 2016b). 

These latter technologies, referred to as “autoreactive”, lack the control unit and wiring as reactions 

to specific stimuli are predetermined and embedded in the material itself. These systems react to 

latent energy conditions and can therefore be considered as high-tech passive systems requiring 

zero-energy in the Operational energy use phase (B6). Moreover, the reduction of wiring and 

Information Technology devices noticeably reduces the impact on the Production stage (A1-A3) and 

the Use stage (B2-B4). 

Methods of actuation: 
- motor based
- hydraulic
- pneumatic
- material based
Motion parameters: 
System type, geometry, energy, 
motion

How to reach the goals

H
UM

AN
  CO

M
FO

RT

Humidity Potential

Rain

Snow

Air

Water

Vapour

B6.1 Heating

B6.4 Hot water

B6.5 Lighting

User

B6.6 Automation
control

B6.3 Ventilation

Light

Heat

B6.2 Cooling

 prevent energy losses
 monitor performance
 ensure low running costs
 guarantee energetic  
performance 

control air exchange rate

 collect solar thermal energy
 collect solar PV energy
 include thermal mass

 arti�cial thermal mass
 prevent surface 

void

void KG

KG

void

KG

O
TH

ER  FUN
CTIO

N
S

TRANSFER FUNCTIONSNATURAL PROCESSES END GOALAGENTS ENERGY

gain
retain
dissipate
prevent

radiation

metabolic rate
conduction
convection

absorption
retroscattering
emission
evaporation

increase
reduction

 control daylight radiation
 comfortable light levels
 glare protection
 allow visual contact

void KG

LCA

transmission

absorption

move

exchange

Sun

Wind

Void

Mass

Radiant
energy

Kinetic

evaporation control
irradiation reduction
gravity - capillary action
evaporation

gain
conserve

transport
lose

adaptive motion
generate energy
store energy

lighting
shading
generate energy

natural convection

EMCS

interaction

 include components for 

temperature di�erences 

condensation - di�usion

pressure di�erence - velocity
gradient

unidirectional /countercurrent �ow
di�usion

LCA stages involved [B6]Energy transferEnergy typeEnvironmental agents End function

Fig. 5  Summary of the connections between environmental agents and ABSs final goals highlighting the means of energy 
transfer and the LCA processes involved (B6) (summarised from Badarnah 2012, 2016, 2017; Persiani et al., 2016a).



	 036	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 7 / NUMBER 2 / 2019

  3.5	 WITHIN WHICH FRAMEWORK DO ADAPTIVE PROCESSES OCCUR? 

As adaptive building technologies adapt to both indoor and outdoor changing contexts, the 

translation of situational information in real time is among its main advantages and purposes. 

In this framework, LCA should be carried out considering more aspects than those pertaining only to 

static building skins. 

LCAs are mostly based on the collection of a great amount of hard data describing the system 

through analysis (EN 15804 2012, Ecoinvent database 2007) and includes information on single 

materials (embodied energy, recyclability potential), material quantities, usage patterns, and stage 

processes (as extraction, production, maintenance and recycling processes). This quantitative 

(calculated) data is largely based on assumptions and estimations, wherever more precise 

information is not available.

Every LCA, however, is affected by a varying degree of uncertainty derived from the cumulative effect 

of imprecisions either due to lack of knowledge in the available data or to variability in the data. 

This is why qualitative considerations (transient or subject to interpretation) can play an important 

role in determining the overall environmental impact of a given object. Soft data refers to human 

intelligence and behaviour, and is bound to interpretation, contradictions, and uncertainty but is 

also very useful to understand environmental occurrences and situational nuances. This is why 

sensitivity analyses, estimating the effects of the choices made regarding methods and data on the 

outcome are recommended as part of an LCA (ISO 14040 2006, Budavari et al., 2011). Moreover, as the 

current technologies quickly evolve towards increased connectivity and Internet of Things (IoT), the 

relationships between hard and soft data become ever more intertwined. 

The integration of variated typologies of information – such as user behaviour – into the analysis is 

therefore all the more interesting in ABS than in more traditional façade technologies.

  3.5.1	 What impact does the timing of adaptation have on LCA?

To achieve environmental comfort, the technology will ideally perform better if it can be adjusted 

more continuously, calling for a very reactive technology that will adapt within short timeframes. 

From an LCA point of view, however, constant reactivity in active ABSs also means constant use of 

energy resources, as well as rising maintenance issues due to the frequency of usage. 

Energy use in ABSs is hypothesised in Fig. 6, referring exclusively to active systems, as passive 

systems are intended to operate at zero energy. Timeframe parameters (from Loonen et al., 2015) 

as seconds, minutes, hours, day-night, and seasons refer to climate adaptivity, while years and 

decades refer to the capacity of extending the life of building parts through maintenance, repair, 

replacement, or refurbishment.

ABSs are expected to have a higher energy cost the faster and the more frequent the 

adaptations, as reacting within seconds requires the system to be constantly ready for change. 

Moreover, fast movements typically require active and more complex energy-intensive brain 

elements (Persiani, 2018). 
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Fig. 6  Temporary and metabolic framework of adaptations in ABSs (timeframe, number of adaptations and hypothesised energy 
intensity). LCA stages involved (B2-6), (C1-4).

In view of optimising the relationship energetic expenditure/adaptive output, the metabolic cost 

(energy use per adaptation cycle) of the reactions is hypothesised in relation to the adaptation 

timeframe. By observing the energy expenditure in animal gaits, where each mechanism reaches 

its optimal relationship between energy expenditure and kinetic output at specific speeds (Persiani, 

2018), the energetic cost per adaptation in ABSs is suggested as higher at slow and very fast speeds. 

What is of interest is to highlight these aspects in the context of an LCA, where the balance between 

product’s lifespan and operational energy phase must be reached.

  3.5.2	 How can adaptive processes be assessed for an LCA?

The definition of ABSs being characterised by their specific functioning – and not as many other 

systems, a set of parts – is in this context of great relevance. It is not only the embodied energy of the 

system that is of interest, but also its potential to reduce the environmental impacts on the usage 

phase. For this, other methods of calculation are needed. Adaptive processes can be considered as 

peculiar characteristics in the façade system and can be assessed separately in the Operational 

energy use phase (B6). The methods of assessment and calculation of the adaptive features play 

a decisive role in the evaluation of an LCA, when compared with traditional façades, and hence 

also in the design of the technology. Assessment of the energy-intensity of ABSs in the Operational 

energy use stage (B6) is achieved through dynamic simulations during the design phase and 

is confirmed through monitoring during usage. Post occupancy reports also help to evaluate 

the optimal response time in relation to the user’s ability to intervene in the regulation of ABSs, 

and whether it interferes negatively with the targeted energy efficiency. For all other life cycle 

phases (A1-A5, B1-B5, C1-C4) the methods of calculations are essentially the same for ABS as for 

traditional façades, which, however, does not mean that the results are the same, as the inputs can 

vary substantially. 
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4	 CONCLUSIONS

The research has suggested an understanding of current and emerging ABSs and their functioning, 

focusing on aspects regarding LCA which have been mostly unconsidered up to now. The following 

points have been highlighted:

–– ABSs are described as systems characterised by sets of interacting parts with specific multiple 

functions, behaviours, and goals. An integration to the definition is suggested to include “containing 

the environmental impacts in all the phases of the building’s life” in the scope of the technology. 

Illustrations of the typologies of ABSs and a summary of the connections between environmental 

agents, energy transfer, LCA processes, and ABSs’ final goals are provided.

–– Adaptivity is either integrated by designing completely new technologies and uses or optimising 

traditional passive building systems with adaptive features. However, as increasingly 

sophisticated adaptive technologies are developed, the boundaries between active-dynamic and 

passive-static systems blur.

–– The integration of variated typologies of information, as situational and real time information is 

among the main advantages and purpose of ABSs. Both quantitative and qualitative assessment, 

such as dynamic simulations and information on user behaviour, play a decisive role in LCA the 

evaluation of the technology.

–– Energy use in ABSs is hypothesised in terms of metabolic costs (energy use per adaptation cycle) 

through the relationship energetic expenditure/adaptive output.

–– LCA is suggested as a tool to optimise the design of ABSs by identifying opportunities to improve the 

environmental performance of products at various points in their life cycle. To effectively enable LCA 

as a design and verification tool in ABSs, a number of knowledge gaps need to be filled:

–– The terminology and ontology of a building’s products need to be implemented for an effective 

comparison with BIM libraries and standards in order to allow for a shared base of understanding 

from design to facility management, through the different design and simulation software.

–– Future developments of smart materials need to be further investigated in terms of LCA to 

provide good databases of knowledge to support the integration of new adaptive features 

in façade technology.

–– Designers need to be more aware of the hierarchy of parts, the processes of production, assembly, 

and the end of use of these technologies in order to be enabled to effectively design better and 

support industry to develop sustainable solutions. Specifically, designers can contribute by carrying 

forward specific design targets able to reduce the impact on different phases of the LCA. A study of a 

hierarchical disassembly of a basic façade unit is provided.

This system mapping is not intended to be exhaustive, but as a base for further implementation 

on the basis of stakeholders’ needs. It is a first step to facilitate the process of Life Cycle Inventory 

during LCA and Life Cycle design. Adaptive building skins’ energy-saving behaviour need to balance 

out its environmental impacts during the production, the usage, and the end of life phases to be 

considered fully sustainable. As adaptive envelopes can be expected to extensively grow in use and 

address an increasingly wider range of building technologies and construction scales, from building 

parts to components, the need for LCA to support ABS research and development greatly increases. 

Indeed, with the purpose of broadening the approach to ABSs and consider the full range of their 

environmental impact, this study will be the basis on which to carry out a comparative analysis 

between traditional and adaptive façades. 
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Annexes

INNOVATIVE TECHNOLOGIES FOR THE BUILDING ENVELOPE

Author Year Topic Approach Answers to Ws Terminology

Quesada et al. 2012a Review of solar 
façades

Technological What Building-integrated solar thermal system (BIST); 
Building-integrated photovoltaic system (BIPV);
Building-integrated photovoltaic thermal system 
(BIPV/T); 
Thermal storage wall; Solar chimney

Quesada et al. 2012b Review of solar 
façades

Technological What Mechanically ventilated transparent façade (MVF); 
Semi-transparent building-integrated photovoltaic 
system (STBIPV); Semi-transparent building-integrated 
photovoltaic thermal system (STBIPV/T); 
Naturally ventilated transparent façade (NVTF)

Tucci 2012 Innovative 
materials and 
components

Technological
Systematic

What
Where

Innovative technologies; 
Variable Property Materials VPM: TIM, PCM, Dynamic 
gel; Variable Conduttance insulation VCI, Aereogel, 
Dielectric glass; Variable Transmittance Glass VTG, 
Variable Convection Diodes VCD, Chromogenic glass, 
Prismatic panes and films; Dynamic Trombe Walls; 
Shading systems.

Klein 2013 Integral Façade 
Construction

Technological
Systematic

What
Where
Why

Integral Façade; Systematic design; Product levels; 
Supporting functions

Zhang et al. 2015 BIST and 
applications

Technological What
Where
How

Building Integrated Solar Thermal (BIST): air based, 
water based, refrigerant based, PCM based

ADAPTIVE FAÇADES

Badarnah 2012 Biomimetics for 
building enve-
lope 
adaptation

Biomimetic Why
How

Multi-functional interface: key functions, morphological 
means, multi-regulation; Environmental challenges; 
Processes

Wang et al. 2012 Review of 
Acclimated 
Kinetic 
building Enve-
lopes 
(AKE)

Biomimetic
Technological

What
How

Acclimated Kinetic building Envelope (AKE); Static 
vs Kinetic; (climate) responsive, active, intelligent, 
(climatic) adaptive, smart, interactive, (high) performa-
tive, kinetic, dynamic; Architectural aesthetics; Solar 
responsive, air-flow responsive;

Loonen et al. 2013 State of the art 
Climate Adaptive 
Building Shells 
(CABS)

Systematic What
Where
How
When

Relevant physics; Time scale; Scale of adaptation; 
Control type; Typology

Loonen et al. 2015 Classification 
approaches for 
adaptive façades

Systematic What
Where
Why
How
When

Unified and systematic characterization; Façade 
classification; Responsive function; Operation: intrinsic, 
extrinsic; Response time; Spatial scale; Visibility; 
Adaptability; Dynamic exterior shading and louver 
façades; PCM glazing; BIPV double-skin 

Luible et al. 2015 Common CABS 
research topics

Mixed What PV; Advanced materials; Façade glazing; Façade shad-
ing; Control systems; Façade functions

McEvoy & Correll 2015 Materials that 
couple sensing, 
actuation, 
computation, 
and 
communication

Technological What
How

Sensing; Actuation; Multifunctional materials; Robotic 
materials; Shape-changing materials
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INNOVATIVE TECHNOLOGIES FOR THE BUILDING ENVELOPE

Author Year Topic Approach Answers to Ws Terminology

Vlachokostas & 
Madamopoulos

2015 Daylighting 
technology in 
high-
rise commercial 
buildings

Technological What
Where
How

Liquid filled prismatic louver (LFPL); 

Badarnah 2016 Light manage-
ment: 
lessons from 
nature

Systematic
Biomimetic

Why
How

Biomimetic design process; morphological means

Jayathissa et al. 2016 LCA of dynamic 
BIPV

Technological
Life Cycle

What
How
When

Building-integrated photovoltaic system (BIPV); Adap-
tive solar façade (ASF); Actuator

Mao et al. 2016 3D Printed 
Reversible 
Shape 
Changing 
Components 

Technological What
Where
How

Stimuli responsive materials; Reversibly actuating 
components; Shape changing components; Shape 
memory polymers; Hydrogels; 3D printed components;

Persiani et al. 2016a Autoreactive 
architectural 
façades

Systematic
Biomimetic

How Unpowered kinetic building skins; Adaptive systems: 
responsive, reactive, interactive, autoreactive; Motion 
parameters: System type, geometry, energy

Persiani et al. 2016b Adaptive mate-
rials 
and autoreactive 
building skins 
(ABS)

Biomimetic
Technological

What
Where
How

Type of energy in the environment: radiant, potential, 
kinetic; adaptivity in materials: SMP, SCP, TEM, TB, 
TBM, SCP, SMP, SMA, SMF, SMC, SM-BS, BM, Aps, SAPs

Sachin 2016 Dynamic Adap-
tive 
Building Enve-
lopes 
(DABE): state of 
the art tech-
nology

Technological What
How

Methods of actuation: motor based, hydraulic actuators, 
pneumatic actuators, material based; Robotic materi-
als; Smart glass

Aresta 2017 Auto-reactive 
strategies. 
Materials for 
innovative 
façade 
components

Technological What
Where
How

Innovative; Adaptive; Passive; auto-reactive systems; 
input-Energy and output-Stategy

Badarnah 2017 Environmental 
adaptation in 
buidling enve-
lope 
design

Systematic
Biomimetic

Why
How

Environmental adaptation; Adaptation means; 

Bridgens et al. 2017 Wood based 
responsive 
building 
skins

Technological
Life Cycle

What
Where
When

Wood based responsive; Hygromorphic materials; re-
sponsiveness; Reactivity; Actuation capacity; Durability; 
Sustainability, Aesthetics; Weathering

Clifford et al. 2017 Application of 
shape-memory 
polymers to 
climate adaptive 
building façades

Technological What
Where
How

Shape-memory polymers; Climate adaptive building 
façades; Dynamic materials; Smart materials; smart 
tiles

Curpek & 
Hraska

2017 Ventilation units 
with PCM for 
double-skin 
BiPV 
façades

Technological What
Where
How

PCM; double-skin BiPV façades
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Author Year Topic Approach Answers to Ws Terminology

Koláček et al. 2017 Thermal Prop-
erties 
of a PCM Win-
dow 
Panel

Technological What
Where
How

PCM

Konis & 
Selkowitz

2017 Advancing 
façade 
performance

Technological What
Where
How

IOT-based sensor network: dynamic façade, sensor, 
controllable lighting, user input

Maywald 2017 Texlon ETFE 
green building 
factsheets – 
product data, 
LEED, BREEAM 
and DGNB

Technological
Life Cycle

What
Where
When

ETFE foils; ETFE cladding system; EPD; Building certi-
fication systems

Molter et. al. 2017 Autoreactive 
components in 
double skin 
façades

Technological What
Where
How

Autoreactive components; double skin façades; Adap-
tive building envelope; closed cavity

Olivieri et al. 2017 Development of 
PCM-enhanced 
mortars for 
thermally acti-
vated 
building 
components

Technological What
Where
How

PCM; Thermal energy storage (TES); Thermally activat-
ed building systems (TABS); Radiant wall

Prieto et al. 2017 Solar cool 
façades, 
review of solar 
cooling inte-
grated 
façade concepts

Technological What
Where
How

Solar cooling technologies; integration; high-perfor-
mance, intelligent, adaptive façades

Ribeiro Silveira 
et al.

2017 adaptive thin 
glass 
façade panels

Technological What
Where

Chemically strengthened Thin glass; Adaptive panels; 
Lightweight façade; Kinetic façade

Table 4  Overview of the Academic Literature


