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Abstract

The thermal performance of adaptive building envelopes can be evaluated using building performance 

simulation tools. Simulation capabilities and accuracy in predicting the dynamic behaviour of adaptive 

building envelopes can be enhanced through co-simulation. However, it is unclear how accurately co-

simulation can predict the performance of adaptive building envelopes and how the accuracy of adaptive 

building envelope models created in co-simulation setups can be assessed and validated. Therefore, 

this study presents new evidence on the empirical validation of co-simulation setups for adaptive 

building envelopes by establishing an assessment framework to determine the extent to which they 

can accurately represent the real world. The framework was applied to a case study to validate a co-

simulation setup for a blind automation system using monitored data from MATELab, a full-scale outdoor 

test facility with realistic indoor and outdoor conditions. The validation of the co-simulation model of 

MATELab resulted in a median CV-RMSE index, a measure of model accuracy, of 5.9%. This indicates that 

the simulated data points have a small variance relative to the measured data points, showing a good 

model fit. In the future, modellers from the façade community can use the assessment framework for 

their co-simulation setups.
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1	 INTRODUCTION

Adaptive building envelopes can improve thermal building performance by dynamically adapting 

their behaviour over time to changing environmental conditions (Loonen, Favoino, Hensen, & 

Overend, 2017). For example, adaptive building envelopes may significantly reduce energy demand 

for lighting, heating and cooling by conveniently modulating the incoming solar radiation (Favoino, 

Fiorito, Cannavale, Ranzi, & Overend, 2016).

Despite the rapid development of novel adaptive building envelope technologies, they are hardly 

adopted in practice. One reason is that capital costs for adaptive building envelopes are typically 

higher than for static building envelopes due to additional components – involving more raw 

materials and higher investment costs. However, operating costs for energy consumption and 

maintenance may be lower throughout the life cycle of adaptive building envelopes and are rarely 

considered by designers and clients (Attia et al., 2018; Loonen, Trčka, Cóstola, & Hensen, 2013). 

Another reason is a lack of evidence in real-world applications of the benefits that can arise from 

these technologies or the lack of benchmarks, standards and testing procedures for evaluating 

adaptive building envelope performance (Hensen, Loonen, Archontiki, & Kanellis, 2015). The latter 

is in part attributed to uncertainty in predictions of adaptive building envelope performance 

when using existing building performance simulation (BPS) tools. BPS tools are software tools for 

predicting building performance by dynamically solving a set of mathematical equations. The main 

barriers to an accurate performance prediction of adaptive building envelopes in BPS tools are: (i) 

the limited modelling capabilities of existing BPS tools in simulating different types and ranges 

of control algorithms, on which the performance of adaptive building envelopes during operation 

largely depends (Loonen et al., 2017), (ii) the limited integration of multi-domain influences 

(Tabadkani, Tsangrassoulis, Roetzel, & Li, 2020) and (iii) the lack of occupant behaviour models that 

can successfully estimate the impact of users (Luna-Navarro, Gaetani, Anselmo, Law, & Overend, 

2021). This limits the capability of BPS tools to adequately capture the influence of the control 

algorithm on the dynamic behaviour of adaptive building envelopes, which in turn increases the 

uncertainty about accurately predicting adaptive building envelope performance. 

Taveres-Cachat, Favoino, Loonen, & Goia (2021) suggest that the co-simulation of adaptive building 

envelope models is a valuable approach to overcome the limitations discussed above.  Co-simulation 

stands for cooperative simulation and refers to the joint simulation of separate models developed 

in different tools. The models are executed in individual simulators and are allowed to cooperate 

(Hafner et al., 2012; Trčka, Wetter, & Hensen, 2009). While the tools communicate and synchronise 

outputs, such as variables or status information, at certain points in time, each tool independently 

solves one part of the coupled problem between the communication points. A particular challenge in 

co-simulation is the time synchronisation and orchestration of the heterogeneous models and their 

individual solvers. To enable synchronisation and interactions across sub-simulators, co-simulation 

uses a coordinator-worker concept. The worker simulates sub-problems, and the coordinator 

initiates the start of the simulation and is responsible for coordinating the overall simulation and 

the data transfer between the tools (Broman et al., 2013). An earlier study by Borkowski, Donato, 

Zemella, Rovas, & Raslan (2019) proposed a modelling approach for the co-simulation of adaptive 

building envelopes. According to Attia, Hensen, Beltrán, & De Herde (2012), BPS tools should provide 

the flexibility to integrate guidance to influence design decisions, e.g. through optimisation of design 

solutions. However, many BPS tools lack such capabilities, and the modelling approach by Borkowski 

et al. (2019) integrates additional functionalities, such as optimisation, to support the design 

decision-making process.



	 121	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

It is still unclear whether co-simulation tools can accurately predict the thermal performance of 

adaptive building envelopes, albeit accurate adaptive building envelope models are crucial (Loonen 

et al., 2017). The accuracy of BPS tools is usually systematically tested through diagnostic methods, 

such as the Building Energy Simulation Test method, which allows comparison of the predictions of 

BPS tools with analytical solutions (Neymark et al., 2002). However, it is generally difficult to establish 

a common diagnostic method for co-simulation setups, as there is no one-size-fits-all approach to 

co-simulation, with the end product often being case-dependent (Trčka et al., 2009).

Despite the importance of assessing the accuracy of co-simulation setups for adaptive building 

envelopes, there is currently only one study that shows the empirical validation of a co-simulation 

setup for adaptive building envelopes, and that is a study by Taveres-Cachat & Goia (2020). In this 

study, a fully controlled test facility was used to validate a co-simulation setup for predicting the 

thermal and daylighting performance of a highly flexible parametric model of an external louvred 

shading system. The study by Taveres-Cachat & Goia (2020) does not take into account that the 

end products of co-simulation setups are very different and strongly depend on the respective 

co-simulation task. For example, they can differ depending on the internal routines of the tools 

used or the degree of complexity required to describe the task. This case dependency means that 

an approach for the validation of co-simulation of adaptive building envelopes is required that 

can be used for the different co-simulation setups.  Therefore, the aim of the present study is to 

provide new evidence on how to validate co-simulation setups for thermal and control models of 

adaptive building envelopes. Since access to expensive calorimetric test facilities is often a barrier 

to providing empirical evidence for co-simulation setups, a full-scale non-calorimetric test facility 

was used. In addition, the approach by Tavares-Cachat & Goia (2020) has been extended through 

the use of an in-situ characterisation and a sensitivity analysis (SA), and details of each step of 

the assessment framework are provided for modellers from the façade design and engineering 

community to determine the accuracy of their own co-simulation setups.

To achieve these objectives, the present study adopted a twofold validation technique. On the one 

hand, empirical validation, which compares the outcomes of a tool with measured data, was used 

to test the solution process and appropriateness of the modelling approach within (i) its domain 

of applicability (Sargent, 2013) and (ii) the range of experimental uncertainty (Coakley, Raftery, & 

Keane, 2014). On the other hand, comparative testing, which compares the outcomes of a tool with 

the outcomes of another tool, was used to identify and diagnose sources of error or inaccuracy 

in the modelling approach. However, conducting comparative testing, which requires the use of 

a tool commonly accepted to represent the state-of-the-art, was complicated by the challenging 

representation of control algorithms for adaptive building envelopes in existing BPS tools. To still be 

able to perform comparative testing, only control algorithms that could be modelled in existing BPS 

tools were used in the present study.

The remaining part of the paper proceeds as follows: the next section (Section 2) provides an 

overview of the challenges of using non-controlled real-world facilities, such as MATELab, an outdoor 

test cell for occupant-façade interaction in the United Kingdom (UK) (Luna-Navarro & Overend, 2021), 

to empirically validate co-simulation setups. MATELab is a 30.0 m2 office-like test facility designed 

to investigate occupant responses to different adaptive building envelope technologies. It has a 

modular glazed building envelope oriented to the east, south and west for testing different building 

envelope bays per orientation (Figure 2). Each bay has a maximum dimension of 1.5 m by 2.3 m 

and was designed to be easily installed and replaced, thereby allowing different building envelope 

technologies to be investigated in a relatively short period of time. In addition, each of the bays 

can be covered with obscuring cover panels made of highly insulated external and corresponding 
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internal plasterboard to generate a broad range of glazing orientation scenarios. Section 3 describes 

the co-simulation setup that is empirically validated and the assessment framework adopted for its 

validation. The results of the validation are then reported in Section 4 and discussed in Section 5. 

2	 CHALLENGES OF ADOPTING NON-CONTROLLED TEST 
FACILITIES FOR EMPIRICAL VALIDATION OF ADAPTIVE 
BUILDING ENVELOPE CO-SIMULATION MODELS

The thermal performance of building envelopes is usually measured in indoor calorimetric 

facilities, as the British Standards Institution describes in BS ISO 19467 (BSI, 2017b). In recent 

years, the performance of adaptive building envelopes has been increasingly tested in outdoor test 

facilities (e.g. Cattarin, Causone, Kindinis, & Pagliano, 2016). However, since they do not present 

full control of environmental parameters or calorimetric conditions, the thermal performance of 

these test facilities tends to be less accurate and controlled than traditional outdoor test cells for 

adaptive building envelopes.

Compared to real buildings, the modelling and calibration of not fully controlled outdoor test cells 

share some challenges but also bring benefits (Cattarin et al., 2016). Of key importance are the 

challenges discussed hereafter. The first challenge is that boundary conditions, thermal bridges and 

air infiltrations have a larger impact on the performance, given the smaller size of these test cells. 

In this sense, the detection of individual heat transfer paths is required, as recommended by Annex 

58 of the International Energy Agency’s Energy in Buildings and Communities (IEA EBC) programme 

(Roels, 2012). Thermal bridges and air infiltration rates also tend to be non-negligible due to the large 

surface-to-volume ratio. 

The second challenge is the measurement and modelling of boundary conditions, which is 

particularly important as boundary conditions are not fully controlled. Monitoring and modelling 

of weather conditions are also important, especially the fraction of direct, diffuse and ground-

reflected solar radiation (Judkoff & Neymark, 2006). Solar gains can have a large impact due to the 

larger surface of the transparent envelope relative to the total volume. The heat transfer coefficient 

of the surface must therefore be accurately selected from the large number of available empirical 

correlations to better describe the specific boundary conditions, such as wind velocity in the 

proximity of the building envelope (Moinard & G.Guyon, 1999). 

If the thermal inertia of the building envelope is low, a third challenge is the unwanted oscillations in 

indoor air temperature compared to highly controlled test cells. Loutzenhiser et al. (2007) highlighted 

that predictions of cooling performance obtained through simulations are more sensitive to 

boundary conditions when performed on lightweight buildings compared to massive buildings due 

to the low thermal mass (and time constant) of the former case. 

Lastly, real-world non-controlled test facilities typically include building automation systems for 

controlling heating, cooling, ventilation, lighting or window systems. These building automation 

systems usually have sensors, but they are not easily accessible or programmable to take 

measurements with the accuracy or frequency required for the calibration process of a BPS tool 

(Saelens & Reynders, 2016).
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3	 CO-SIMULATION SETUP AND ASSESSMENT FRAMEWORK 
FOR VALIDATION IN A NON-CONTROLLED TEST FACILITY

This section provides an overview of the co-simulation setup and the assessment framework 

used to validate it.

3.1	 CO-SIMULATION SETUP

The co-simulation setup used the modelling approach developed by Borkowski et al. (2019) to model 

the blind automation system of MATELab. The modelling approach was specifically developed to 

accurately predict the thermal performance of control algorithms for adaptive building envelopes. 

To represent adaptive building envelopes, the modelling approach uses the following software:

	– EnergyPlus: Integration of EnergyPlus v8.9.0 (National Renewable Energy Laboratory, 2018) to create 

the thermal model of the building and the building envelope.

	– Dymola: Integration of Dymola v2020x (Dassault Systèmes, 2018), a commercial simulation 

programme based on the object-oriented, multi-domain modelling language Modelica (Modelica 

Association, 2017), to create the model of the control algorithm.

	– FMI Standard: Integration of the Functional Mock-up Interface (FMI) Standard v2.0  (MODELISAR, 

2014), an open middleware developed to facilitate communication and information exchange 

in co-simulation setups, to exchange information at each simulation timestep between 

EnergyPlus and Dymola. 

Dymola is used as a coordinator simulation tool, and EnergyPlus as a worker simulation tool, 

as shown in Figure 1. This means that the EnergyPlus model is encapsulated and shared as 

a Functional Mock-up Unit (FMU) for co-simulation, which enables EnergyPlus to exchange 

information at each timestep with Dymola. The software package EnergyPlusToFMU v3.0.0 (Nouidui, 

Lorenzetti, & Wetter, 2020) is invoked to create the FMU, which is then manually imported into 

Dymola, the co-simulation coordinator, and connected to the control algorithm model. In the present 

study, the solar irradiance was measured in MATELab and provided as an input to the model to 

compute the blind position, which was then provided as an input for the FMU.

Blind position

Thermal model of 
MATELab

Model of 
control strategy

Integrated modelling approach

EnergyPlus as FMU

Worker Coordinator

Dymola

FMI

Fig. 1  Schematic of the co-simulation process: the control algorithm for the blind automation system in Dymola was coupled to 
the model of MATELab through the FMI Standard for information exchange at each zone timestep.
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The co-simulation was automated through a script written in Python v3.8.5 (Python Software 

Foundation, 2020), which covered three basic steps: (i) export of the thermal model of MATELab as an 

FMU to be used in the co-simulation setup by calling EnergyPlusToFMU through the Subprocess.call() 

function; (ii) co-simulation of the entire model of MATELab through the Simulator.simulate() function 

of the BuildingsPy package (Lawrence Berkeley National Laboratory, 2019) and (iii) extraction and 

storage of data in CSV format for analysis. All simulations required for the validation were performed 

using the standard Dassl solver of Dymola with the default solver tolerance of 10-4 on a 2015 

MacBook Pro with a dual-core Intel Core i5 processor of 2.7 GHz and with 16 GB of memory running 

Ubuntu 20.04 in a virtual machine.

3.2	 ASSESSMENT FRAMEWORK

Table 1 describes the assessment framework to validate co-simulation setups for adaptive building 

envelopes used in non-controlled calorimetric test facilities. MATELab was chosen as a case study 

for a non-controlled and non-calorimetric test facility to collect the empirical data. The following 

sections describe the actions taken in each step of the framework’s application and the rationale for 

the specific procedures and techniques used to identify, collect and analyse information.

Table 1  Steps involved in the validation of co-simulation setups for control algorithms of adaptive building envelopes

Step

1 Definition of the validation scenario according to the purpose of the present study.

2 In-situ characterisation of the thermal properties of the validation scenario.

3 Collection of empirical data for the validation.

4 Creation of a reduced-complexity thermal model of the validation scenario in EnergyPlus based on the available facility 
construction documentation and the in-situ characterisation results.

5 Undertaking of a SA to identify key input variables for the calibration.

6 Calibration of the reduced-complexity thermal model of the validation scenario.

7 Creation of an adaptive building envelope model in the co-simulation setup by extending the model from Step 6 with a 
control algorithm for the building envelope.

8 Validation of the co-simulation setup by comparing the predicted data with the experimental data and identification of 
potential sources of error.

3.3	 VALIDATION SCENARIO

The first step in the validation of the co-simulation setup was to define the validation scenario 

according to the purpose of the study. For the present study, MATELab was used with the east and 

west glazing panels covered with the obscuring cover panels internally and externally, thereby 

generating a south-facing glazed building envelope scenario. The south-oriented glazing consisted 

of two high-performance double-glazed units and internal automated Venetian blinds, as shown in 

Figure 3. This setup resulted in a window-to-wall ratio of approximately 0.5 on the south-oriented 

building envelope. The validation scenario’s characteristics are reported in Appendix A.
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a	 � b	 �

Fig. 2  Exterior views of MATELab: a. View of the south-west building envelope; b. View of the east building envelope with cover 
panels.

a	 b	

Fig. 3  Views of blind installed in MATELab: a. View from inside to outside through blind with installed sensors; b. Detailed view of 
blind slats.

MATELab was unoccupied and operated in a free-running mode during this study, i.e. the underfloor 

air distribution (UFAD) system was switched off. This eliminated uncertainties arising from occupant 

behaviour and operation of the heating, ventilation and air-conditioning (HVAC) system, as suggested 

by previous work (Lomas, Eppel, Martin, & Bloomfield, 1997). It resulted in a simpler and more 

controlled validation scenario and facilitated the identification of inaccuracy or error in the building 

envelope and in the basic setup of the model. 

Table 2 shows the control algorithm of the automated Venetian blinds that was implemented for the 

validation of the co-simulation setup. It was a rule-based control algorithm whose input and output 

were the solar irradiance, the time delay and the position of the blind.
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Table 2  Control algorithm for MATELab’s blind automation system

Input I
sol,sky

: global horizontal solar irradiance in W/m2

Output I
sol,south

: global vertical solar irradiance on south surface in W/m2

Algorithm set I
sol

 = 1/3 x I
sol,sky

 + 1.0 x I
sol,south 

if I
sol

 > 250 W/m2 and t > 15 min then 
    u

blind
 = 1.0 

else
     u

blind
 = 0.0

end if

Due to the challenges of modelling a test facility such as MATELab, it was initially necessary to model 

a reduced-complexity model of MATELab, i.e. the thermal model with a static building envelope, 

allowing for a better understanding of the model dynamics. Accordingly, for the reduced-complexity 

model (Step 4), the blind automation system was turned off, so the building envelope was static. 

In addition, the blinds remained down all the time to minimise solar gain effects. In contrast, in the 

co-simulation model (Step 7), the blind automation system was turned on, so the building envelope 

was adaptive. Details of both models are reported in Table 3. 

Table 3  Building envelope setup of models in validation scenario

Step Model Mode of operation Position of blinds Measurement period

4 Reduced-complexity model Static Down 14-21 May 2020

5 Co-simulation model Adaptive Alternating depending on 
control algorithm

8-16 August 2020

3.4	 IN-SITU CHARACTERISATION OF THERMAL CHARACTERISTICS

In the second step, the thermal characteristics of the validation scenario were characterised. 

The thermal performance of the building envelope is often considered a major source of uncertainty 

in thermal building models, as the actual performance may differ from the performance estimated 

during design. For this reason, this methodology proposed the characterisation of the building 

envelope through in-situ measurements. The in-situ characterisation included the evaluation of the 

most important thermal properties of the building envelope: the thermal transmittance and the solar 

factor of the glass façade, the thermal bridges and the air infiltration flow rate. Further details of the 

calculations and procedures are given in Appendix B.

3.4.1	 In-situ measurements of U- and g-values

According to ISO Standard 13790 (International Organization for Standardization Technical 

Committee 163/SC 2, 2008), the thermal characterisation of the building envelope is done by 

evaluating the air tightness, as recommended in BS EN 13829 (BSI, 2001), and by measuring two 

simplified parameters: (i) the thermal transmittance, i.e. the U-value (W/m2K), and, if glazed, the 

solar factor, i.e. the g-value (-). These two parameters are usually measured under steady-state 

conditions either by laboratory tests or by software tools integrating databases of glass panes. 

However, due to the simplified approach in evaluating these parameters, they may not correspond 

to the actual thermal and solar performance (Goia & Serra, 2018). For example, there may be a 

discrepancy between the boundary conditions registered in situ and the standardised conditions 



	 127	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

used during laboratory characterisation. Therefore, the simplified approach can lead to significant 

differences between the calculated and in-situ energy performance of the glazing system. Since 

there are no calorimetric conditions in non-controlled, non-calorimetric test facilities to assess the 

performance of the building envelopes, this framework used the in-situ characterisation based on 

the work by Goia and Serra (2018). The framework measures the U- and g-values through empirical 

measurements under non-calorimetric conditions. The measurements for the characterisation of the 

in-situ performance of the building envelope were taken as shown in Figure 4.

a	 b	

Fig. 4  Experimental setup in MATELab: a. Plan view with the indoor sensors at the centre of the facility (1) and at the building 
envelope (2); b. Experimental setup at the building envelope with indication of the sensors used (sensor details are reported in 
Appendix B); c. Area-weighting for the calculation of the U-value..

3.4.2	 Air tightness of building envelope

The air tightness of the building envelope can be characterised in situ by a blower door test (BDT) 

according to BS EN 13829 (BSI, 2001). This standard describes two types of test methods, depending 

on the purpose of the application. Method A (testing of a building in use) is applied during the 

heating or cooling season, while Method B (testing of the building envelope) assumes that intended 

openings in the building envelope are closed or sealed and the HVAC system is switched off. In a 

BDT, a specific range of pressure differences is created in the building envelope, and the airflow 

through the fan is monitored to assess the level of air tightness of the building envelope. Method B 

was chosen in this study since the goal of the air tightness test was to evaluate the performance of 

the building envelope. Therefore, all openings of the test facility were closed or sealed, including the 

air conditioning grills and vents, and the UFAD system was switched off. The indoor and outdoor 

temperatures were the same. The BDT was performed on a day when the meteorological wind speed 

was within the recommended range of BS EN 13829 (BSI, 2001).

After performing the BDT, the data were processed according to the Technical Memoranda TM23 by 

the Chartered Institution of Building Services Engineers (CIBSE, 2000) to determine the air tightness.
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3.4.3	 Thermal bridges assessment

If the validation scenario has a large ratio of external surface area to internal volume, thermal 

bridges can significantly affect the thermal model of the test facility and must be evaluated 

accordingly. Thermography provides a rapid and non-destructive means of assessing the thermal 

performance of building envelopes in situ (Asdrubali, Baldinelli, & Bianchi, 2012). Applications 

include (i) detection of missing or defective insulation, (ii) detection of air leaks and moisture and (iii) 

investigation of thermal discontinuities in the building envelope and thermal bridges. 

Thermographic tests should be carried out in accordance with BS EN 13187 (BSI, 1999) and BS 

EN ISO 6781-3 (BSI, 2015). When using thermography to identify thermal bridges, the temperature 

difference between the inside and outside of the building should be at least 10 °C. To minimise the 

effect of solar radiation on the results, in-situ thermographic tests are usually carried out during the 

night. In this study, the method proposed by Asdrubali et al. (2012) was used to quantify the effect 

of thermal bridges. 

3.5	 DATA COLLECTION PROCEDURES

The third step was to collect empirical data for the validation. During the measurement periods, the 

parameters described below were measured based on the available sensors for undertaking the 

model calibration and validation. After the data collection, the values were compiled and averaged 

over 1 minute. Details on the measurement campaign are reported in Appendix C. 

3.5.1	 Outdoor environmental parameters

Outdoor environmental parameters were needed to create the weather file for the validation of the 

model of MATELab. Weather data, specifically the dry bulb air temperature and the global horizontal 

solar irradiance, were collected using the weather station of MATELab, located on its roof at a height 

of approximately 3.0 m above ground level. It was assumed that these data were of particular 

importance for predicting MATELab’s performance, in particular the aspects listed in Table 4.

Table 4  Effects of measured outdoor environmental parameters on the performance of MATELab

Parameter measured Measurement instrument used Performance aspects affected by 
parameter

Dry bulb air temperature Weather station Exterior surface convection 
Infiltration/ventilation sensible heat 
transfer

Global solar irradiance Weather station Fenestration heat gains 
Exterior surface heat balance 
Control algorithm

3.5.2	 Indoor environmental parameters

Indoor environmental parameters were needed to assess the accuracy of the model during validation. 

The thermal performance indicator used was the indoor temperature, which was measured at the 

centre of the facility by a 1.0 m high sensing station (1 in Figure 4a). 
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3.5.3	 Parameters related to control actions of blind automation system

Another data point required for the validation was the control actions of the blind automation 

system, namely the position of the blind. It was an important data point for the cross-validation of 

model outcomes, as the performance of adaptive building envelopes largely depends on the control 

algorithm during operation. 

3.6	 CREATION OF A REDUCED-COMPLEXITY THERMAL MODEL

The reduced-complexity thermal model was developed in the fourth step in EnergyPlus, which was 

chosen because it can represent the building envelope with sufficient accuracy (Attia et al., 2018). 

This offers the possibility to simulate and explore the performance of adaptive building envelope 

technologies constructed in MATELab in future studies. Furthermore, EnergyPlus allows the 

calculation of the thermal performance under non-stationary conditions, which is important in the 

present study as MATELab has a low thermal mass and is free-running. In the model, three thermal 

zones were implemented: (i) a supply air plenum under the raised floor, (ii) a return air plenum over 

the suspended ceiling and (iii) an occupied space. Further simulation parameters of the thermal 

model of MATELab are reported in Appendix D.

The models of the building envelopes were initially created based on the specifications received 

from the manufacturers of the building components. In a second iteration, the U- and g-values 

measured in Step 2 were incorporated. This was followed by a third iteration in which the U-values 

of the opaque building components were modified to capture the effects of the thermal bridges as 

measured in Step 2. Thermal bridges were included by increasing the conductivity of each building 

component by the corresponding value.

Data from outdoor environmental conditions were then used to create a new weather file for 

the study periods with Elements (Big Ladder Software & Rocky Mountain Institute, 2016), a free 

and open-source software tool for creating and editing custom weather files. Further details are 

reported in Appendix D.

3.7	 SENSITIVITY ANALYSIS TO INFORM THE CALIBRATION 

In the fifth step, a SA was carried out to identify key input variables for the calibration. The evaluation 

of the uncertainties is a fundamental step in the calibration process of BPS tools to confirm that a 

model was implemented correctly (de Wit & Augenbroe, 2002). In the present study, this was achieved 

by identifying and quantifying the degree of uncertainty of the most important input variables of 

the model of MATELab and then fine-tuning uncertain input variables to minimise discrepancies 

between measured and predicted data points. Possible sources of uncertainty in the model of 

MATELab are listed in Table 5.

Table 5  Possible sources of uncertainty in the model of MATELab

Type of uncertainty Description

Specification uncertainty Inaccurate or incomplete building and system specifications, such as geometry, 
material and blind properties and internal heat gains.

Modelling uncertainty Simplifications and inaccurate assumptions of the physical processes, such as infil-
tration and ground heat transfer characteristics, in the computational simulation.

Numerical uncertainty Errors introduced in the numerical analysis of the computational simulation.

Scenario uncertainty Inaccurate representation of external conditions imposed on the building, such as 
climate conditions and occupant behaviour.



	 130	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

Detailed audits and in-situ characterisation are effective instruments to reduce the first source 

of uncertainty and should be carried out where possible. This includes in-situ measurements of 

actual geometrical characteristics as well as HVAC and lighting systems and schedules. Such 

in-situ characterisations are relatively easy to perform in outdoor test facilities that are not fully 

controlled (as described in Step 1), so that uncertainties due to inaccurate or incomplete building 

specifications become negligible. 

To determine the most important input variables, the next step of the calibration process consisted 

of undertaking a SA (Chong and Menberg 2018). In this study, a global approach to SA was adopted, 

taking into account the interactions between variables by varying input variables simultaneously 

over the whole input sample space. The approach to global SA adopted was a Monte Carlo sensitivity 

analysis (MCSA), a variance-based method that measures the sensitivity of the output to the input 

variable by the amount of variance in the output caused by that input (Tian, 2013). It uses random 

samples from a given distribution, and this study selected the Latin hypercube sampling (LHS) 

method to generate the sample due to its efficient stratification properties. Figure 5 shows the 

schematic of the processes involved in the MCSA.

Select input variables of 
MATELab model 

subject to uncertainty

Generate latin 
hypercube sample to 

represent uncertainty in 
input variables

Determine probability 
distributions of input 

variables to represent 
uncertainty

Conduct sensitivity 
analysis by calculating 

sensitivity indices

Run MATELab model 
on each latin hypercube 

sample to determine 
distributions of output 

variables

Identification of most 
important input 

variables

Fig. 5  Workflow diagram showing the processes involved in the MCSA.

In the MCSA, numerous sets of input-output variables were generated by running the model of 

MATELab on the input sample. The uncertain inputs considered in the MCSA are listed in Appendix 

E. Correlation-based methods were then applied to measure the strength of the input and output 

variables and to rank the input variables from 1 (the most important variables) to 8 (the least 

important variable). The two indices applied were: (i) the Pearson correlation coefficient (S
Pear

) to 

measure the strength of the linear relationship between each of the input variables and the indoor 

temperature and (ii) the Spearman rank-order correlation coefficient (S
Spear

) to measure the strength 

of the monotonic relationship between each of the input variables and the indoor temperature. Both 

indices had to be applied to capture information in the case of a non-linear relationship between 

input and output variables. The ranking was then used to generate plots for an initial qualitative 

evaluation of key input variables using the Python package Matplotlib (Hunter, 2007): (i) tornado 

plots to compare the relative importance of the input variables and (ii) scatter plots to show the 

relationships between the variables.
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Given that sensitivity indices are estimated based on a limited sample, SA methods are subject to 

uncertainty (Yang, 2011). To get good estimations nonetheless, Monte Carlo simulations require many 

iterations depending on the complexity of the model and the number of parameters. The present 

work used the bootstrap technique (Yang, 2011), plotting the estimated statistic against the gradually 

increasing base sample size. Convergence is assumed as soon as there is no significant variation for 

each sensitivity index. 

As the MCSA required many iterations and thus a lot of computing power, a research computing 

cluster was used to run the MCSA, which was completely automated through a Python script. 

To keep the computational time as short as possible, the MCSA only utilised the previously created 

reduced-complexity model. This required the use of EnergyPlus alone, which helped to reduce the 

computational intensity of the MCSA.

3.8	 CALIBRATION OF A REDUCED-COMPLEXITY THERMAL MODEL

The reduced-complexity model was calibrated in the sixth step. Previous work on model calibration 

of outdoor test facilities suggested using an uncertainty analysis (UA) in the calibration of a thermal 

model (Jensen, 1995). An UA was described as ‘the process of determining the degree of confidence 

in the true value when using a measurement procedure(s) and/or calculation(s)’ by the American 

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 2014, p. 10). It measures 

the acceptable level of model accuracy using uncertainty indices. The index applied in this part of the 

study was the coefficient of variation of root mean square error (CV-RMSE) index, which measures 

the variability of the errors between measured and simulated data points, thereby indicating the 

model’s ability to fit the data

Equation 1

where  is the average of the measured data points, mi is the measured data point for each model 

instance i, si is the simulated data point for each model instance i. n is the number of measured data 

points, and p is the number of adjustable data points, which is suggested to be zero for a calibration.

The IEA EBC Annex 58 developed a comprehensive framework and guidelines for reliable in-situ 

dynamic testing to characterise the actual energy performance of building components and whole 

buildings (Roels, 2012). This study applied the framework proposed in IEA EBC Annex 58 by using an 

automated method to calibrate the model once the experimental data collection has been performed. 

The automated calibration was implemented by using jEPlus (Zhang, 2012), a parametric tool for 

EnergyPlus, and an automated optimisation script in Python. It calculated the CV-RMSE index for 

each design option and selected the minimum CV-RMSE index as the final calibration solution. 

The parameters for the calibration were selected based on the results of the MCSA. 

ASHRAE and other organisations (e.g. ASHRAE, 2014; Federal Energy Management Program, 

2008; International Organization for Standardization Technical Committee 163/SC 2, 2008) specify 



	 132	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

the maximum values for model calibration depending on whether the model was calibrated with 

hourly or monthly data. Furthermore, it should be noted that current calibration criteria only refer 

to the predicted energy consumption and do not account for uncertainties or inaccuracies of input 

parameters or the accuracy of the simulated environment (e.g. temperature profiles). This study 

used the hourly CV-RMSE index, which should be less than 30.0% for a model considered calibrated 

(ASHRAE, 2014). In previous work, calibrated models of outdoor test facilities have achieved low 

CV-RMSE values, such as 2.0% (Taveres-Cachat & Goia, 2020) or 3.4% (Martínez, Erkoreka, Eguía, 

Granada, & Febrero, 2019).

3.9	 CREATION OF CONTROLLER MODELS 

To model alternative dynamic controls of the adaptive building envelope, the previously created 

EnergyPlus model of MATELab was connected to a controller model in the seventh step. 

The controller model was developed in (i) the Energy Management System (EMS) feature of 

EnergyPlus and (ii) Dymola in the co-simulation setup. The controller model in the EMS feature 

was used (i) for the SA and (ii) to generate outputs of a tool that is generally accepted as state-

of-the art to identify and diagnose sources of error or inaccuracy in the co-simulation setup 

(Neymark et al., 2002). The co-simulation model was then used to test the accuracy of the adaptive 

building envelope model’s predictions coupled with the modelling approach, a co-simulation setup 

developed in previous work. 

3.9.1	 Controller model in EMS feature of EnergyPlus

The EMS feature uses the EnergyPlus runtime language (Erl), a simple scripting language, to 

describe control algorithms (DOE 2018). EnergyPlus interprets and executes the control sequence 

implemented in Erl as the model is being run. In the present study, the EMS feature was used to 

provide high-level supervisory control to override the WindowProperty:ShadingControl object in 

EnergyPlus. Without the EMS feature, MATELab’s control algorithm could only have been modelled in 

fragments, as blind control algorithms within EnergyPlus are either preset or time-scheduled. This 

might have had a negative impact on the model outcome (BSI, 2017a). To model a control algorithm 

that is based on boundary conditions or simulation state variables instead, the EMS feature must be 

used. Even though two aspects of the control algorithm were particularly complex to model in the 

EMS feature (Appendix D), it was implemented in the EnergyManagementSystem:Program object in 

EnergyPlus, as shown in Figure 6.

Fig. 6  Control algorithm for MATELab’s blind automation system in the EMS feature of EnergyPlus.
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3.9.2	 Controller model in co-simulation setup

To link the EnergyPlus model to the Dymola model, the external interface of EnergyPlus had to be 

activated. With the ExternalInterface object present, the values listed in the object received their 

inputs from the FMI Standard at each zone timestep. The software package EnergyPlusToFMU 

was used to export the EnergyPlus model of MATELab as an FMU for co-simulation. The FMU was 

then imported into Dymola, where it appeared as an input/output block and was connected to the 

controller model. Figure 7 represents the model of the control algorithm in Dymola, with (i) the input 

data of the monitored solar irradiance, (ii) the control algorithm and (iii) the FMU.

(iii)

(i)

(ii)

(a)

(b)
(c)

(a) Calculate solar irradiance Isol
(b) Estimate time delay t
(c) Set position of blind ublind

Fig. 7  Graphical representation of the control algorithm model for MATELab’s blind automation system in Dymola.

3.10	 ANALYSIS OF VALIDATION RESULTS

When analysing the validation results in the eighth step, there could be large discrepancies between 

measured and simulation-predicted data points. Another UA was therefore carried out to quantify 

how well the model of MATELab described the variability in the measured data, hence decreasing the 

model’s uncertainty and increasing the level of confidence in it. The uncertainty indices used in this 

part of the study to evaluate the accuracy were the normalised mean bias error (NMBE) and the 

CV-RMSE (as in Step 6, see Section 3.6.2). The NMBE index gives the global difference between 

measured and simulated data points by normalising the average of the errors of a sample space and 

dividing it by the mean of the measured data points ( ).
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Equation 2

where mi is the measured data point for each model instance I, si is the simulated data point for each 

model instance i, and n is the number of measured data points. p is the number of adjustable data 

points, which is suggested to be zero for the validation.

Although the NMBE index is a good measure of model accuracy, its main problem is the cancellation 

error, where the sum of positive and negative values reduces the value of the NMBE index (Ruiz & 

Bandera, 2017). Consequently, using this index alone is not recommended, and the CV-RMSE index 

was used as a further measure of model accuracy.

As outlined in Figure 8, an iterative process was applied to reduce discrepancies between measured 

and predicted data points. The model’s output variable of interest used to calculate the uncertainty 

indices was the indoor temperature, and the acceptable range of accuracy should be in accordance 

with ASHRAE Guideline 14-2014 (ASHRAE, 2014). According to the guideline, the hourly NMBE 

index is required to be less than 10.0%, and the hourly CV-RMSE index less than 30.0% to evaluate 

a model as validated.

Yes

Simulate models

No

Calculate
uncertainty indices

Compare predicted
and measured data

Fine-tune input
variables of models

ASHRAE
criteria are met

Models fit 
measured data

Fig. 8   Iterative process for the reduction of discrepancies between measured and predicted data.

4	 RESULTS AND DISCUSSION

This section discusses the results that emerged from this study. It begins by presenting the 

results related to the in-situ measurements and the results of the MCSA. It then moves on to 

analyse the calibration of the reduced-complexity model of MATELab and the validation of the co-

simulation model of MATELab.
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4.1	 IN-SITU MEASUREMENTS 

Figure 9a shows the linear regression leading to the determination of the in-situ thermal 

transmittance for the measurement points A, B, C and D given in Figure 4, while Figure 9b shows the 

linear regression leading to the evaluation of the U-values at the edge of the glass, corresponding 

to the measurement points E, F and G in Figure 4. The resulting U-values are reported in Table 

15 in Appendix F. The total U-value was then evaluated by calculating a weighted average of each 

zone corresponding to the areas of influence in Figure 4. The total U-value was assessed as 1.2 W/

Km2, which is higher than the U-value of 1.1 W/Km2 originally obtained from the manufacturer’s 

specifications. The total U-value was adjusted accordingly in the model of the construction elements 

of the thermal model.

a	 � b	 �

Fig. 9  Results from the U-value monitoring: a. Linear regressions leading to the computing of the U-values closer to the centre of 
the glass pane; b. U-values at the edge of the glass pane.

Figure 10 shows the results of the g-value monitoring and the corresponding linear regression 

for the empirical evaluation of the g-value. It can be seen that the g-value of 0.4 is higher than 

the originally assumed 0.3 in the first iteration of the model. This was adjusted accordingly in 

the second iteration.

Fig. 10  Linear regression leading to the evaluation of the g-value.
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The results of the BDT are shown in Figure 11, which plots the characteristic curve of the air 

infiltration in MATELab. The air permeability of the building envelope was found to be 2.3 air 

changes per hour at 50.0 Pa. This value is within the recommended maximum limit of the UK 

Part L regulation for fuel and power conservation (Office of the Deputy Prime Minister, 2006). 

The value of the flow coefficient C was determined to be 0.0084, which was then used as an input 

in the ZoneInfiltration:FlowCoefficient object in EnergyPlus. A schedule of 24/7 and a conventional 

pressure exponent of 0.7 were used. For the stack coefficient, the value recommended by ASHRAE 

Fundamentals for a one-storey building with a typical shelter for a rural house was used, 

corresponding to 0.000145 (ASHRAE, 2017).

Fig. 11  Characteristic curve of the air infiltration of MATELab.

Finally, the thermal images in Figure 12 show the temperature distribution of the outdoor surface 

temperature of MATELab. The even colouring of the walls around the windows indicates a uniform 

installation of the thermal wall insulation. The temperature distribution also shows that there are no 

significant thermal bridges in the building envelope, except for the expected thermal bridges at the 

interface between two different materials (e.g. glass-frame) and at geometrical discontinuities.

a	 � b	 �

Fig. 12  Thermographic images of two different building envelopes of MATELab, taken from the outside: a. South-facing glass 
façade; b. East building envelope with opaque covers on glass.
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4.2	 MONTE CARLO SENSITIVITY ANALYSIS

The aim of the MCSA was to determine the most important input variables in the validation scenario 

by using the sensitivity indices S
Pear

 and S
Spear

 to evaluate the relationships between the input 

variables and the indoor air temperature T
ai
. 

As discussed above, this study adopted the bootstrap technique to achieve convergence. S
Pear

 and 

S
Spear

 were plotted against the gradually increasing number of iterations N, and convergence was 

assumed as soon as there was no significant variation for each sensitivity index. Figure 13 shows 

that the indices reveal a clear distinction between the two most important input variables – the 

internal heat gains Q
int

 and the infiltration flow rate Q
inf

 – and the other six variables after a few 

hundred iterations (N = 750). Internal heat gains describe the heat emitted within MATELab from 

internal sources, especially computer equipment, resulting in a temperature increase within the 

facility, and infiltration describes the unintended flow of outside air into MATELab, typically caused 

by cracks in the building envelope. 

a	 � b	 �

Fig. 13  Convergence of S
Pear

 and S
Spear

 for input variables and increasing base sample size expressed as number of iterations N.

While the indices started to converge at the base sample size of around 5000, only the two most 

important variables (Q
int

 and Q
inf

) could be identified with certainty. The other six variables (p, c, 

T
g
, h

c
, d and V) had no noticeable effect on the model outcome compared to the internal heat gains 

and the infiltration flow rate. The data show that these six variables had a negligible correlation 

with S
Pear

 and S
Spear

 close to zero. This indicated that the relationship was random or non-existent. 

It would thus have been computationally ineffective to increase the number of iterations further. As a 

consequence, convergence was assumed.

This study applied two correlation-based methods to measure the strength of the input and output 

variables. From the data in Figure 14, it is apparent, however, that S
Pear

 and S
Spear

 were similar for 

each of the input variables, consequently leading to the same conclusions. The data also shows that 

the two most important input variables in relation to the indoor air temperature were the internal 

heat gains Q
int

 and the infiltration flow rate Q
inf

. Therefore, variations in the indoor air temperature 

could largely be attributed to variations in the internal heat gains
 
and the infiltration flow rate, and 

the internal heat gains and the infiltration flow rate were used to calibrate the model.
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a	 � b	 �

Fig. 14  Comparison of the relative importance of the input variables for N = 10000, with the rank of each input variable given next 
to the bar (1 is the highest rank).

4.3	 CALIBRATION OF A REDUCED-COMPLEXITY THERMAL MODEL

The aim of calibrating the reduced-complexity model with the static building envelope was to 

minimise the error between the measured and predicted indoor air temperature T
ai
. This was 

achieved by fitting the internal heat gains and the infiltration flow rate through the automated 

process described in Section 3.8. In this process, the model was calibrated by performing an 

automated parametric analysis and running 4,642 simulations varying the internal heat gains and 

the infiltration flow rate. The simulation scenario with the minimum CV-RMSE index was then 

selected, indicating a good model fit. Table 6 shows the CV-RMSE index and the correspondent 

internal heat gains and infiltration flow rate before calibration (predicted based on the construction 

documents and the results of the in-situ characterisation) and after calibration (predicted based on 

the results of the parametric analysis). Figure 15 compares the predicted indoor air temperature 

T
ai
 before and after calibration with the measured indoor air temperature. In addition, the following 

changes were made to the model:

	– Since infiltration highly depends on outside wind conditions, measured wind data from MATELab’s 

weather station were added to the weather file.

	– Since MATELab’s weather data were not measured at World Meteorological Organization standard 

conditions, the Site:WeatherStation object was added to EnergyPlus to specify the measurement 

conditions for the climatic data, such as the height above ground of the weather station.
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Fig. 15  Comparison of measured and predicted Tai before and after calibration of the reduced-complexity model.
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Table 6  Comparison of CV-RMSE index before and after calibration

Model CV-RMSE (%) Qint (W/m2) Air infiltration

Before calibration 6.6 8.7 Q
inf

: 0.0008 m3/s m2

After calibration 6.3 13.0 C: 0.0084 

The results in this section indicate that the in-situ characterisation proved useful in improving 

the accuracy of the predicted data. This shows that including the non-calorimetric in-situ 

characterisation of the building envelope in the assessment framework may contribute to a more 

accurate prediction of the indoor air temperature. It should be noted that the original thermal model 

developed based on construction documents was already very accurate, with a CV-RMSE index of 

6.6%, well below the ASHRAE requirement of 30.0%. The reason for this could be the authors’ detailed 

knowledge of MATELab’s construction details. The fact that the data collection was conducted shortly 

after the test facility was built may also have contributed to the accurate results, as the building 

components were largely unaffected by deterioration and maintenance factors. For example, the 

U-values were not significantly different from those published in the construction documents. 

Nevertheless, an in-situ characterisation is recommended in all cases because the performance 

of building components deteriorates over time. Therefore, it is important to measure their actual 

performance at the time of data collection. In addition, the use of non-stationary models to measure 

the actual performance of the building envelope may be considered. 

4.4	 VALIDATION OF A CO-SIMULATION MODEL OF MATELAB 

The validation was undertaken to reduce the uncertainty of the model of MATELab created in a co-

simulation setup. The control algorithm was modelled, in addition to Dymola, in the EMS scripting 

feature of EnergyPlus to identify and diagnose sources of error or inaccuracy in the co-simulation 

setup. Since the parameters of the thermal model and the weather file were identical for both 

models, the main difference between them was that the control algorithm was modelled in different 

tools. When comparing the predictions of the models of MATELab with the actual measured data, 

good agreement with the measured data was found. The data were analysed by descriptive statistics, 

and the summary statistics for the uncertainty indices NMBE and CV-RMSE are compared in Table 

7. The data in the table shows that the NMBE minima (Dymola: -1.4%, EMS: -1.4%) and maxima 

(Dymola: 0.8%, EMS: 0.7%) were well below the ASHRAE requirement of 10.0% for hourly empirical 

data. With median values of -0.1% (Dymola) and -0.1% (EMS) for the NMBE indices, both Dymola and 

EMS models tended to slightly over-predict the measured data. However, NMBE indices close to zero 

indicate that there is only a small difference between the predicted and actual indoor air temperature 

and that the model has a sound goodness-of-fit. Similarly, the CV-RMSE minima (Dymola: 0.01%, 

EMS: 0.02%) and maxima (Dymola: 20.6%, EMS: 21.0%) were well below the AHREAE requirement of 

30.0%, which was also suggestive of a good model fit.

Table 7  Summary statistics of uncertainty indices applied in validation

Type of error Tool Median Standard deviation Minimum Maximum

NMBE (%) Dymola -0.1 0.5 -1.4 0.8

EMS -0.1 0.5 -1.4 0.7

CV-RMSE (%) Dymola 6.3 4.0 0.01 20.6

EMS 6.2 4.2 0.02 21.0



	 140	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

The results of the validation are also shown in Figure 16. When comparing the measured and 

predicted indoor air temperature data, the discrepancies between measured and predicted data 

become apparent, especially in the last three days when the weather quickly changed from sunny 

to cloudy. A possible explanation for this could be inaccuracies in the thermal mass (e.g. due to 

computer equipment inside MATELab). If the real test facility was lighter than the model, it gave back 

more thermal energy and cooled down faster when the environmental temperatures were cooler 

than the thermal mass.

Fig. 16  Comparison of measured and predicted Tai in the validation of the co-simulation model.

Interestingly, Dymola and the EMS feature predicted slightly different outcomes. Since the weather 

file and the parameters of the thermal model were identical, it can be assumed that the differences 

were due to the different models and solution techniques supported by each of the tools used to 

represent the control algorithm. For example, the EMS feature used the Erl programming language 

commands, such as IF-ELSEIF-ELSE-ENDIF statements and trend variables, and Dymola used the 

Modelica Standard Library (Modelica Association, 2016) model components, such as Modelica.Blocks.

Logical.Hysteresis and Modelica.Blocks.Logical.Switch. But such small discrepancies were expected 

and are in line with earlier observations, e.g. by Trcka, Wetter, and Hensen (2009).

These different approaches to representing the control algorithm in the respective tools may have 

resulted in differences in how the output of the control algorithm was computed. A differently 

computed control algorithm could then have led not only to discrepancies in the predictions of the 

blind movements but also to discrepancies in the predictions of the indoor temperatures. Figure 17 

compares the measured and predicted blind positions for two representative days. On 11 August 

(Figure 17a), the blinds closed at 13:10 (measured), while in Dymola they moved at 13:15 and in the 

EMS feature at 13:05. This error could be linked to data averaging during the analysis according to 

the 5-minute timestep of the simulation, but also to an inaccurate implementation of the time delay 

in either the real test facility or in the models. Furthermore, the EMS feature predicted to open the 

blinds at 16:15 (measured: 15:55, Dymola: 16:00). This inaccuracy could be due to the input data of 

the monitored solar irradiance for the control algorithm, which contained 15-minute interval data 

and was provided to EnergyPlus using values from an external CSV file as a schedule. The input data 

in Dymola were the same as in EnergyPlus. But whereas Dymola was able to interpolate the data so 

that they matched the measured data, EnergyPlus did not interpolate them but adopted the same 

value for 15 minutes. After 15 minutes, EnergyPlus moved on to the next value in the input file and 

adopted this value again for a period of 15 minutes. 
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a	 � b	 �

Fig. 17  Comparison of measured and predicted blind positions (0: blinds open, 1: blinds closed) for two representative days.

The blind behaviour discussed above also appeared on 12 August (Figure 17b). The EMS feature 

predicted a spike in the movement of the blinds for 15 minutes between 16:20 and 16:35. The reason 

for this was again the interpolation of the solar irradiance data. While there was one occurrence 

where the solar irradiance was greater than the control threshold of 250 W/m2, the blinds should not 

have moved, given the 15-minute time delay. Because of the interpolation error described above, the 

control algorithm in the EMS feature assumed that the solar irradiance was above the threshold for 

more than 15 minutes, resulting in the blinds being incorrectly closed.

These results indicate that both Dymola and the EMS feature of EnergyPlus were able to represent 

the control algorithm for MATELab’s blind automation system. But it remains unclear whether or 

not the differences between the predicted and measured blind behaviours were due to an inaccurate 

implementation of the time delay in the real test facility. Although such imperfect knowledge of the 

experimental objects being simulated is common (Judkoff and Neymark, 2006), it is recommended 

to fully understand the implementation of a control algorithm in the real test facility to be able to 

model it correctly. Also, the results may provide some advice to other modellers on how to adapt the 

setup of similar models:

	– Even though EnergyPlus was set to interpolate the values from the 15-minute interval input data to 

the 5-minute simulation timestep, this study found that EnergyPlus did not correctly interpolate the 

input data, resulting in inaccurate predictions. Future work should take this error into account and 

debug the EnergyPlus model to thoroughly determine its cause(s).

	– A potential solution to resolve this error could be to provide solar irradiation data at 5-minute 

intervals to EnergyPlus. In this case, EnergyPlus would not need to interpolate the input data so that 

it could correctly (i) calculate the time delay and (ii) predict the positions of the blinds. 

5	 CONCLUSION

This research was undertaken to provide new evidence on how to validate co-simulation setups 

for adaptive building envelopes using a full-scale non-controlled and non-calorimetric test facility. 

The adaptive component of the building envelope in the case of the present study was MATELab’s 

blind automation system. The results show that the validated model of MATELab accurately captured 

the building envelope controls and properties with median CV-RMSE indices of 5.9% for Dymola in 

the co-simulation setup and 6.1% for the EMS feature. This underlines the capability of the proposed 

assessment framework to validate both models to accurately reflect the variability in the measured 

data. Furthermore, the result suggests that the co-simulation setup can generally be used to validate 
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the behaviour of adaptive building envelopes, confirming the findings of Taveres-Cachat et al. (2021), 

who found that their co-simulation setup with Grasshopper had a CV-RMSE index of 2.0%, also well 

within the acceptable range of accuracy.

Nevertheless, it may be difficult to generalise these results because, on the one hand, empirical 

validation only tests ‘whether the simulation model’s output behaviour has the accuracy required 

for the model’s intended purpose over the domain of the model’s intended applicability’ (Sargent, 

2013, p. 18). The co-simulation setup consequently validated the behaviour of MATELab only for its 

intended application (i.e. rule-based control algorithm). Further testing is hence required to create a 

truth standard for other control algorithms and to validate the co-simulation setup over the complete 

domain of its intended applicability. On the other hand, empirical validation should never be used as 

the only validation method due to measurement uncertainty and experimental complexity (Cattarin 

et al. 2018). Consequently, there is abundant room for further progress in fully determining the 

accuracy of the co-simulation setup, e.g. by undertaking inter-model comparisons. 

Despite its lack of generalisation, the assessment framework can be used by modellers from the 

façade design and engineering community to determine the accuracy of their own co-simulation 

setups. To enable them to use the framework, it is important to provide the key lessons learned:

	– During the first set of measurements, the HVAC system of MATELab was turned on. Very soon, it 

became clear that the data were too complicated and hindered the understanding of the effects of, for 

example, the building envelope, the heat gains and the climate conditions on the building dynamics. 

Therefore, it was decided to perform the validation with data from the free-running MATELab to 

determine the cause of certain deviations in the data.

	– The initial simulation results, which considered the manufacturers’ specifications for the building 

components, differed from the measurements. To ensure that key input values, such as the 

infiltration rate, were entered correctly, it was decided to perform an in-situ characterisation.

	– It sometimes proved difficult to compare predicted with measured data and especially to find output 

variables in the thermal EnergyPlus model suitable for comparison with the measured sensor 

variables. While the authors of this study were fortunate to have full access to the sensor variables 

in MATELab, this could complicate the validation of adaptive building envelopes in other studies. It is 

therefore recommended to ensure that appropriate empirical data are available for validation.

	– Despite the high number of input variables, the MCSA accelerated the investigation of the effects 

of the input variables on the outcome of the MATELab model. Therefore, the MCSA was particularly 

useful in reducing the number of parameters to be adjusted during the calibration process. However, 

since a high number of simulations was necessary to achieve convergence, the use of the reduced-

complexity model appeared to be critical to potentially reduce the time needed to run the MCSA.

By ensuring that the predictions of the co-simulation setups of modellers from the façade community 

are accurate, the assessment framework has the potential to lead to broader use of co-simulation 

in the industry. Co-simulation is a valuable approach to overcoming the limitations in accurately 

predicting the performance of adaptive building envelopes in BPS tools. This, in turn, can help façade 

designers and engineers to reliably evaluate the performance of adaptive building envelopes and 

integrate them more easily into building projects. In turn, more adaptive building envelopes may 

lead to more energy-efficient buildings, which may help achieve global climate change goals.



	 143	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

CRediT author statement

Esther Borkowski: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data curation, 
Writing – Original Draft, Writing – Review & Editing, Visualization, Project administration

Alessandra Luna-Navarro: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data 
Curation, Writing – Original Draft, Writing – Review & Editing, Visualization, Project administration

Michalis Michael: Methodology, Formal Analysis, Investigation, Data Curation, Writing – Original Draft, Visualization

Mauro Overend: Writing – Review & Editing, Supervision

Dimitrios Rovas: Writing – Review & Editing, Supervision

Rokia Raslan: Writing – Review & Editing, Supervision

Acknowledgements

The authors acknowledge the use of the UCL Myriad High Throughput Computing Facility (Myriad@

UCL), and associated support services, in the completion of this work.

References

American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2014). ASHRAE Guideline 14-2014: Measurement of 
Energy and Demand Savings. Atlanta, GA, USA: ASHRAE.

American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2017). 2017 ASHRAE Handbook—Fundamentals (SI 
Edition). ASHRAE.

Asdrubali, F., Baldinelli, G., & Bianchi, F. (2012). A quantitative methodology to evaluate thermal bridges in buildings. Applied 
Energy, 97, 365–373. https://doi.org/10.1016/j.apenergy.2011.12.054

Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., & Goia, F. (2018). Current trends and future challenges in the performance 
assessment of adaptive façade systems. Energy and Buildings, 179, 165–182. https://doi.org/10.1016/j.enbuild.2018.09.017

Attia, S., Hensen, J., Beltrán, L., & De Herde, A. (2012). Selection criteria for building performance simulation tools: Contrasting 
architects’ and engineers’ needs. Journal of Building Performance Simulation, 5(3), 155–169. https://doi.org/10.1080/19401493
.2010.549573

Big Ladder Software & Rocky Mountain Institute. (2016). Elements. Retrieved from https://bigladdersoftware.com/projects/
elements/

Borkowski, E., Donato, M., Zemella, G., Rovas, D., & Raslan, R. (2019). Optimisation Of Controller Parameters For Adaptive Building 
Envelopes Through A Co-Simulation Interface: A Case Study. Proceedings of Building Simulation 2019: 16th Conference of IBPSA. 
Rome, Italy.

British Standards Institution. (1999). BS EN 13187:1999: Thermal performance of buildings. Qualitative detection of thermal 
irregularities in building envelopes. Infrared method. British Standards Institution. Retrieved from https://bsol.bsigroup.com/
en/Bsol-Item-Detail-Page/?pid=000000000001569434

British Standards Institution. (2001). BS EN 13829:2001: Thermal performance of buildings. Determination of air permeability of 
buildings. Fan pressurization method. British Standards Institution. Retrieved from https://bsol.bsigroup.com/en/Bsol-Item-
Detail-Page/?pid=000000000019983036

British Standards Institution. (2015). BS EN ISO 6781-3:2015: Performance of buildings. Detection of heat, air and moisture 
irregularities in buildings by infrared methods. Qualifications of equipment operators, data analysts and report writers. British 
Standards Institution. Retrieved from https://bsol.bsigroup.com/en/Bsol-Item-Detail-Page/?pid=000000000030259341

British Standards Institution. (2017a). BS EN 15232-1:2017: Energy Performance of Buildings. Impact of Building Automation, Controls 
and Building Management. Modules M10-4,5,6,7,8,9,10. British Standards Institution.

British Standards Institution. (2017b). BS ISO 19467: 2017: Thermal performance of windows and doors. Determination of solar heat 
gain coefficient using solar simulator. British Standards Institution. Retrieved from https://bsol.bsigroup.com/en/Bsol-Item-
Detail-Page/?pid=000000000030294394

Broman, D., Brooks, C., Greenberg, L., Lee, E., Masin, M., Tripakis, S., & Wetter, M. (2013). Determinate composition of FMUs for 
co-simulation. Proceedings of the International Conference on Embedded Software (EMSOFT), 1–12. Montréal, Canada: IEEE 
Press.

Cattarin, G., Causone, F., Kindinis, A., & Pagliano, L. (2016). Outdoor test cells for building envelope experimental characterisation – 
A literature review. Renewable & Sustainable Energy Reviews, 54, 606–625. https://doi.org/10.1016/j.rser.2015.10.012



	 144	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

Chartered Institution of Building Services Engineers. (2000). Testing Buildings for Air Leakage - CIBSE Technical Memoranda TM23: 
2000. Chartered Institution of Building Services Engineers.

Chartered Institution of Building Services Engineers. (2015). CIBSE Guide A: Environmental design. London, UK: Chartered 
Institution of Building Services Engineers.

Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. 
Renewable and Sustainable Energy Reviews, 37, 123–141. https://doi.org/10.1016/j.rser.2014.05.007

Dassault Systèmes. (2018). Dymola. Lund, Sweden. Retrieved from https://www.3ds.com/productsservices/catia/products/dymola
de Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings, 

34(9), 951–958. https://doi.org/10.1016/S0378-7788(02)00070-1
Department of Energy. (2018). EnergyPlus v9.0.1 Documentation—Application Guide for EMS. Department of Energy.
Dervishi, S., & Mahdavi, A. (2012). Computing diffuse fraction of global horizontal solar radiation: A model comparison. Solar 

Energy, 86(6), 1796–1802. https://doi.org/10.1016/j.solener.2012.03.008
Digital Technology Group. (n.d.). DTG weather station.
Duffie, J. A. (2013). Solar Engineering of Thermal Processes (4th ed.). Somerset: John Wiley & Sons, Incorporated.
Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average 

global radiation. Solar Energy, 28(4), 293–302. https://doi.org/10.1016/0038-092X(82)90302-4
Favoino, F., Fiorito, F., Cannavale, A., Ranzi, G., & Overend, M. (2016). Optimal control and performance of photovoltachromic 

switchable glazing for building integration in temperate climates. Applied Energy, 178, 943–961. https://doi.org/10.1016/j.
apenergy.2016.06.107

Federal Energy Management Program. (2008). M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 
3.0). Retrieved from https://www.hud.gov/sites/documents/DOC_10604.PDF

Goia, F., & Serra, V. (2018). Analysis of a non-calorimetric method for assessment of in-situ thermal transmittance and solar factor 
of glazed systems. Solar Energy, 166, 458–471. https://doi.org/10.1016/j.solener.2018.03.058

Hafner, I., Rössler, M., Heinzl, B., Körner, A., Breitenecker, F., Landsiedl, M., & Kastner, W. (2012). Using BCVTB for Co-Simulation 
between Dymola and MATLAB for Multi-Domain Investigations of Production Plants. Proceedings of the 9th International 
Modelica Conference. Munich, Germany. https://doi.org/10.3384/ecp12076557

Hensen, J., Loonen, R., Archontiki, M., & Kanellis, M. (2015). Using building simulation for moving innovations across the ‘valley of 
death’. REHVA Journal, 52(3), 58–62.

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.
org/10.1109/MCSE.2007.55

International Organization for Standardization Technical Committee 163/SC 2, C. methods. (2008). Energy performance of 
buildings—Calculation of energy use for space heating and cooling (2nd ed.: 2008-03–01). Geneva: ISO.

Jensen, S. Ø. (1995). Validation of building energy simulation programs: A methodology. Energy and Buildings. https://doi.
org/10.1016/0378-7788(94)00910-C

Judkoff, R., & Neymark, J. (2006). Model validation and testing: The methodological foundation of ASHRAE Standard 140. ASHRAE 
Transactions.

Lawrence Berkeley National Laboratory. (2019). BuildingsPy. Retrieved from http://simulationresearch.lbl.gov/modelica/
buildingspy/

Lomas, K. J., Eppel, H., Martin, C. J., & Bloomfield, D. P. (1997). Empirical validation of building energy simulation programs. Energy 
and Buildings, 26(3), 253–275. https://doi.org/10.1016/S0378-7788(97)00007-8

Loonen, R., Favoino, F., Hensen, J., & Overend, M. (2017). Review of current status, requirements and opportunities for building 
performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205–223. https://doi.org/10.10
80/19401493.2016.1152303

Loonen, R., Trčka, M., Cóstola, D., & Hensen, J. (2013). Climate adaptive building shells: State-of-the-art and future challenges. 
Renewable and Sustainable Energy Reviews, 25, 483–493. https://doi.org/10.1016/j.rser.2013.04.016

Loutzenhiser, P. G., Maxwell, G. M., & Manz, H. (2007). An empirical validation of the daylighting algorithms and associated 
interactions in building energy simulation programs using various shading devices and windows. Energy. https://doi.
org/10.1016/j.energy.2007.02.005

Luna-Navarro, A., Gaetani, I., Anselmo, F., Law, A., & Overend, M. (2021). The influence of occupant behaviour on the energy 
performance of single office space with adaptive facades: Simulation versus measured data. Proceedings of Building 
Simulation Conference 2021. Ghent, Belgium.

Luna-Navarro, A., & Overend, M. (2021). Design and validation of MATELab: A novel full-scale test room for investigating occupant 
perception to and interaction with façade technologies. Building and Environment, 203, 108092. https://doi.org/10.1016/j.
buildenv.2021.108092

Madsen, H., Bacher, P., Bauwens, G., Deconinck, A.-H., Reynders, G., Roels, S., … Lethé, G. (2016). IEA EBC Annex 58, Report of Subtask 
3, part 2: Thermal performance characterisation using time series data – statistical guidelines. Leuven, Belgium: KU Leuven. 
Retrieved from https://www.iea-ebc.org/Data/publications/EBC_Annex_58_Final_Report_ST3b.pdf

Martínez, S., Erkoreka, A., Eguía, P., Granada, E., & Febrero, L. (2019). Energy characterization of a PASLINK test cell with a gravel 
covered roof using a novel methodology: Sensitivity analysis and Bayesian calibration. Journal of Building Engineering, 22, 
1–11. https://doi.org/10.1016/j.jobe.2018.11.010

Modelica Association. (2017). Modelica. Linköping, Sweden. Retrieved from https://www.modelica.org
MODELISAR. (2014). FMI Standard for co-simulation. Retrieved from https://fmi-standard.org
Moinard, S., & G.Guyon. (1999). IEA Task 22: Empirical validation of EDF ETNA and GENEC test-cell models.
National Renewable Energy Laboratory. (2018). EnergyPlus. Golden, CO, USA: DOE. Retrieved from https://github.com/NREL/

EnergyPlus



	 145	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

Neymark, J., Judkoff, R., Knabe, G., Le, H.-T., Dürig, M., Glass, A., & Zweifel, G. (2002). Applying the building energy simulation 
test (BESTEST) diagnostic method to verification of space conditioning equipment models used in whole-building energy 
simulation programs. Energy and Buildings, 34(9), 917–931. https://doi.org/10.1016/S0378-7788(02)00072-5

Nouidui, T., Lorenzetti, D. M., & Wetter, M. (2020). EnergyPlusToFMU. Berkeley, CA, USA: LBNL. Retrieved from http://simulationre-
search.lbl.gov/fmu/EnergyPlus/export/index.html

Office of the Deputy Prime Minister. (2006). Conservation of fuel and power: Approved Document L.
Python Software Foundation. (2020). Python. Wilmington, NC, USA. Retrieved from https://www.python.org/
Roels, S. (2012). Annex 58—Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements. 

The International Energy Agency.
Ruiz, G. R., & Bandera, C. F. (2017). Validation of Calibrated Energy Models: Common Errors. Energies, 10(1587), 1–19. https://doi.

org/10.3390/en10101587
Saelens, D., & Reynders, G. (2016). Report of Subtask 4b: Towards a characterisation of buildings based on in situ testing and smart 

meter readings and potential for applications in smart grids.
Sargent, R. G. (2013). Verification and validation of simulation models. Journal of Simulation, 7(1), 12–24. https://doi.org/10.1057/

jos.2012.20
Tabadkani, A., Tsangrassoulis, A., Roetzel, A., & Li, H. X. (2020). Innovative control approaches to assess energy implications 

of adaptive facades based on simulation using EnergyPlus. Solar Energy, 206, 256–268. https://doi.org/10.1016/j.
solener.2020.05.087

Taveres-Cachat, E., Favoino, F., Loonen, R., & Goia, F. (2021). Ten questions concerning co-simulation for performance prediction of 
advanced building envelopes. Building and Environment, 191, 107570-. https://doi.org/10.1016/j.buildenv.2020.107570

Taveres-Cachat, E., & Goia, F. (2020). Co-simulation and validation of the performance of a highly flexible parametric model of an 
external shading system. Building and Environment, 182, 107111-. https://doi.org/10.1016/j.buildenv.2020.107111

Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable & Sustainable Energy Reviews, 20, 
411–419. https://doi.org/10.1016/j.rser.2012.12.014

Trčka, M., Wetter, M., & Hensen, J. (2009). An implementation of co-simulation for performance prediction of innovative integrated 
HVAC systems in buildings. 724–731. Glasgow, Scotland: Lawrence Berkeley National Laboratory.

Yang, J. (2011). Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling & 
Software, 26(4), 444–457. https://doi.org/10.1016/j.envsoft.2010.10.007

Zhang, Y. (2012). Use jEPlus as an efficient building design optimisation tool. Presented at the CIBSE ASHRAE Technical Symposium, 
London, UK. London, UK. Retrieved from http://www.jeplus.org/wiki/lib/exe/fetch.php?media=docs:072v1.pdf



	 146	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

Appendix A	 BUILDING ENVELOPE CHARACTERISTICS

The test facility has internal dimensions of 5.0 m x 6.0 m x 2.5 m and is fully exposed to the outside. 

The required ventilation is provided by an UFAD system through a plenum below the finished 

floor level, and the exhaust air is extracted through the ceiling plenum. The construction and 

characteristics of the opaque building envelopes are shown in Table 8, and the characteristics of 

the transparent envelope are listed in Table 9. The internal walls are white and have a surface 

absorptance of approximately 0.3 and a surface emissivity of approximately 0.9.

Table 8  Characteristics of opaque building envelopes of MATELab

Component 
Total U-value

Layers Thickness
(m)

Density
(kg/m3)

Specific heat 
(J/kg*K)

Roof Steel sheet 0.002 8050 500

0.10 W/Km2 Rock wool panel 0.30 22.0 1030

Air layer 0.15 1.25 1000

Steel PIR sandwich panel 0.040 37.0 1400

Floor Wood floor 0.030 350 2300

0.15 W/Km2 Cavity 0.10 1.25 1000

Wood panel 0.030 350 2300

Steel 0.002 8050 500

Cavity 0.15 1.25 1000

Steel PIR sandwich panel 0.15 37.0 1400

External wall Wood panel 0.024 350 2300

0.175 W/Km2 Air layer 0.020 1.25 1000

Steel sheet 0.002 8050 500

Steel PIR sandwich panel 0.10 37.0 1400

Internal wall Plasterboard 0.0125 600 1090

0.50 W/Km2 Rock wool 0.050 22.0 1030

Plaster board 0.0125 600 1090

Glass building envelope external panel Steel PIR sandwich panel 0.15 37.0 1400

Glass building envelope internal panel Wood 0.050 350 2300

Table 9  Characteristics of the transparent building envelopes of MATELab

Component Characteristics Value

Glass building envelope U-value 1.10 W/Km2

Solar heat gain coefficient 0.31

Visible transmittance 0.50

Solar transmittance 0.27

Internal blind Slat width 0.035 m

Slat separation 0.030 m

Solar reflectance 0.65
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Appendix B	 IN-SITU CHARACTERISATION OF BUILDING ENVELOPE

The in-situ characterisation included the evaluation of the most important thermal properties of the 

building envelope. This appendix contains detailed information on the in-situ characterisation of (i) 

the thermal transmittance and the solar factor of the glass façade, (ii) the air leakage flow coefficient 

and (iii) the thermal bridges.

B.1	 THERMAL TRANSMITTANCE AND 
SOLAR FACTOR OF GLASS FAÇADE

To formulate the thermal performance of the building envelope as a linear and stationary steady-

state thermal model, the measured data were sub-sampled by averaging it over a sufficiently 

long period of time. In addition, the recommendation of Madsen et al. (2016) was followed, which 

indicates that measurements should be averaged over periods equal to the length of the sampling 

time. If the test facility has a low thermal mass, a low-frequency time (equal to or less than 6 

hours) is suggested. Further details of the experimental setup of the in-situ characterisation 

are listed in Table 10.

Table 10  Measured environmental parameters with details of sensing devices and frequency of monitoring for the in-situ 
characterisation

Parameter Location Sensor Frequency

Heat flux Inner building envelope 
surface

Hukseflux Heat flux meter 1 min

Global Solar Irradiance Inner and outer building 
envelope surface

Hukseflux Pyranometer 1 min

Air temperature Outer and inner building 
envelope surface

Pt100 Lastem 1 min

Following Goia & Serra (2018), the U-value U was obtained by linear regression using the ordinary 

least squares method and calculated as: 

Equation 3

Equation 4

where ∆T is the temperature difference between the outdoor environment T
out

 and the indoor 

environment T
in

 measured in the proximity of the building envelope. dq
i
 is the heat flux measured 

at the glass façade at each timestep i until the final timestep n. These measurements were taken at 

night to minimise the effect of solar radiation on the long-wave heat transfer. 

The g-value g was calculated as:
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Equation 5

Equation 6

Equation 7

Equation 8

where E
out,i

 is the solar radiation incident on the glass façade at each timestep and dq
g,i

 is the solar 

energy transmitted through the glass, taking into account both the transmitted solar energy E
in

 and 

the energy transmitted by the glass due to the absorbed incident solar energy dq
E
. To calculate dq

E
, 

the heat transferred due to the difference in temperature between indoor and outdoor dq
∆T

 must be 

subtracted from the total heat flow of the glass dq, which can be measured with a heat flux meter. 

dq can be calculated taking into account U and ∆T according to Equations 3 and 4.

B.2	 AIR LEAKAGE FLOW COEFFICIENT

After performing the BDT, the data were processed according to CIBSE TM23 (CIBSE, 2000) to 

determine the air leakage flow coefficient C. The data obtained during the test included a series of 

flow rate values Q for pressure differences ∆P between indoors and outdoors: 

Equation 9

where n is a coefficient that depends on the facility characteristics and can be determined from 

the experimental data. Transforming the above equation with natural logarithms, the following air 

leakage characteristic curve is obtained:

Equation 9

The equation is obtained by linearising the data using natural logarithms and linear regression. 

The results must then be corrected to account for differences between actual test conditions and 

those of instrument calibration (CIBSE, 2000).
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B.3	 THERMAL BRIDGES

To quantify the effect of thermal bridges, the method proposed by Asdrubali et al. (2012) was 

used. This method is based on the evaluation of the incidence factor of the thermal bridges I
tb

, 

which is defined as:

Equation 9

Equation 9

where U
1D

 is the thermal transmittance without the thermal bridge, ψ is the linear thermal 

transmittance of the thermal bridge, l
1D

 is the length of the side of the wall perpendicular to the 

thermal bridge and unaffected by it, and l
tb

 is the length of the wall affected by the thermal bridge. 

The incidence factor of the thermal bridges, considering steady-state conditions and a constant 

convective coefficient, represents the ratio between the measured thermal loss, including the 

effect of the thermal bridge and the thermal loss of the same area of the wall without considering 

the effect of the thermal bridges. Therefore, the new corrected U-value U
corrected

 is defined as 

shown in Equation 12.

The thermal images were taken for each of the locations indicated in Table 11. The images were 

taken at a distance of 30.0 cm from the thermal bridge to minimise possible errors due to an 

incorrect selection of the emissivity of the infrared camera. A FLIR T650 infrared camera was used 

for this assessment.

Table 11  Location of the thermal bridges assessed

Reference Location

A Bottom corners between south and east opaque walls and floor

B Top corners between south and east opaque walls roof

C Top corners between north and west opaque walls roof

D Bottom corners between north and west opaque walls and floor

E Junction between north and east, north and west walls

F Junction between walls and floor

G Junction between walls and ceiling

H Junction between south and west, south and east walls
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Appendix C	 DESCRIPTION OF MEASUREMENT CAMPAIGN

Due to ongoing research work, MATELab was only available for a limited period of time for data 

collection, and data were gathered between 14-21 May 2020 and 8-16 August 2020. During 

these periods, the parameters listed in the remainder of this appendix were collected: (i) outdoor 

environmental parameters, (ii) indoor environmental parameters and (iii) parameters related to 

the control algorithm.

C.1 OUTDOOR ENVIRONMENTAL PARAMETERS

The available weather station on MATELab’s roof at the time of the experiment collected data on 

the dry bulb air temperature and the global solar irradiance. To evaluate the diffuse and direct 

components of the measured solar irradiance, a simplified approach was followed. The diffuse 

solar irradiance was approximated by the correlation model by Erbs, Klein, & Duffie (1982), whose 

accuracy was confirmed by Dervishi & Mahdavi (2012). This model calculates the ratio of the diffuse 

to the global solar irradiance as a function of the clearness index k
T
. The average clearness index 

value for London, UK, in May and August was used (Duffie, 2013). Therefore, the diffuse component 

I
sol,dif

 was evaluated as:

Equation 13

where I
sol,sky

 is the global horizontal solar irradiance. The direct solar irradiance was then derived 

from the difference between the global and the diffuse solar irradiance.

When values were missing in the weather data set, the data had to be interpolated. To verify the 

accuracy of the measured data, dry bulb air temperature data were compared with data from a 

nearby weather station located on the roof of the Cambridge Computer Laboratory by the Digital 

Technology Group (DTG, n.d.). Nonetheless, a larger weather dataset would have been preferable to 

accurately determine the local boundary conditions. Ideally, direct and diffuse solar irradiance data 

at the weather station level should also have been measured since the control algorithm relied on the 

solar irradiance data and, therefore, even short-term inaccuracies could lead to incorrect or time-

shifted control actions.

These data were then supplemented with humidity and wind data from an existing weather file for 

Cambridge created with Meteonorm v6.0 (Meteotest 2007). 

C.2	 INDOOR ENVIRONMENTAL PARAMETERS

Additional monitoring stations were also available to measure the indoor environmental quality at 

several different locations in MATELab and on the building envelope. A typical setup to monitor the 

influence of building envelopes on indoor environmental quality is reported in previous work (Luna-

Navarro & Overend, 2021). Table 12 reports information on the sensing devices per environmental 

parameter and the frequency and location of the measurement.
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Table 12  Measured environmental parameters with details of sensing devices and frequency of monitoring for the 
validation

Parameter Location Sensor Frequency

Indoor dry bulb air 
temperature

Centre of facility Pt100 Lastem 10 min

Surface temperature 
(optional)

One location Plate Pt100 Lastem 10 min

Direct and global solar 
radiation

Roof of the test facility or any 
unobstructed location in the 
proximity

Weather station 1 min

Outdoor dry bulb air 
temperature

In the proximity of the test 
facility and shielded by solar 
radiation

Weather station 10 min

Wind speed In the proximity of the test 
facility but not obstructed 
by the test facility or other 
buildings

Weather station 10 min

C.3	 PARAMETERS RELATED TO THE CONTROL ALGORITHM

The movements of the blinds were monitored by a control unit, which wrote a message in a log and 

stored it in an internal memory when an action of the actuator was registered, i.e. when the position 

of a blind changed. To evaluate the accuracy of the predicted control actions during validation, the 

data points related to the control actions of the blind automation system were downloaded and used 

directly from the computer that stored the actuator messages. Other indoor and outdoor parameters 

triggering control actions, e.g. solar radiation incident on the building envelope and indoor and 

outdoor temperatures, were also used to validate blind movements.

Appendix D	 MODELLING AND SIMULATION DETAILS

This appendix provides details on the modelling and simulation of the model of MATELab. 

In particular, it outlines (i) the modelling parameters of the thermal model, (ii) the simulation 

and measurement periods and (iii) the modelling challenges of the control algorithm in the EMS 

feature of EnergyPlus.

D.1	 MODELLING PARAMETERS OF THE THERMAL MODEL

The thermal model of MATELab was created in EnergyPlus based on the parameters reported in 

Section 3.3 and in Table 13.

Table 13  Modelling parameters of MATELab

Parameter Condition

Occupancy None

Air conditioning None

Infiltration flow rate 0.0008 m3/s per zone floor area

Internal heat gains Lighting: 11.8 W/m2

Computer equipment: 10.0 W/m2



	 152	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 10 / NUMBER 1 / 2022

D.2	 SIMULATION AND MEASUREMENT PERIODS

Figure 18 shows the durations of the measurement periods (EMS: 14-21 May 2020, Dymola: 

8-16 August 2020) and the simulation periods (EMS: 1-31 May 2020; Dymola: 1-31 August 2020). 

It highlights that the simulation periods began several days before the actual measurement periods, 

which was necessary to ensure that the initial conditions produced by the simulations matched 

those of the measured data. To determine the appropriate number of days needed to produce similar 

initial conditions, simulations and comparisons with the measured data were carried out in advance. 

In addition to the simulation period, the model was warmed up between 6 and 25 days, which was 

automatically determined by EnergyPlus and continued until the temperatures and heat flows in 

each zone converged, as described by the U.S. Department of Energy (DOE, 2018). The simulation 

timestep was 5 minutes. 

Measurement period

Simulation period
Maximum number 
of warmup days

01/04 15/04 01/05 15/05 01/06 Time

a	 �

Measurement period

Simulation period
Maximum number 
of warmup days

01/07 15/07 01/08 15/08 01/09 Time
b	 �

Fig. 18  Schematic of simulation and measurement periods: a. EMS feature; b. Co-simulation setup.

D.3	 MODELLING CHALLENGES OF THE CONTROL 
ALGORITHM IN EMS FEATURE

Two aspects of the control algorithm were particularly complex to model in the EMS feature. 

Modelling these aspects was, however, important to reduce the modelling uncertainty and eventually 

obtain realistic predictions of the control actions for validation. Firstly, the monitored solar irradiance 

had to be used as an input to the control algorithm to ensure that the information provided to the 

control system was the same for the real and the predicted setup. This was achieved by using the 

Schedule:File object in EnergyPlus as a schedule, which read sub-hourly values from an external 

CSV file. While the input file contained 15-minute interval data, the Interpolate to Timestep field was 

set to interpolate values and use them at the appropriate minute in the hour. Secondly, the control 

algorithm had a time delay; since the blinds changed their position only when the solar irradiance 

was greater than 250 W/m2 for more than 15 minutes. The time delay was modelled in the EMS 

feature through the use of trend variables, which are used to store the history of Erl variables.
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Appendix E	 UNCERTAIN INPUTS USED IN MCSA

The model of MATELab had many input variables that could vary as a result of specification and 

modelling uncertainty. However, the variables that were likely to have an impact on the indoor air 

temperature – the performance indicator – were:

1	 Infiltration flow rate

2	 Density of building envelope cover panels

3	 Specific heat capacity of building envelope cover panels

4	 Ground temperature

5	 Internal heat gains of equipment

6	 Convective heat transfer coefficient of gap between MATELab and the ground

7	 Thickness of internal partition

8	 Volume of internal partition

The infiltration flow rate and the ground temperature (inputs 1 and 4) were based on measurements, 

and it was assumed that they follow standard normal distributions. Inputs 2 and 3 were based on the 

manufacturer’s specifications in terms of nominal performance, which might differ from the actual 

performance in situ. Therefore, a standard normal distribution was assumed, and the minimum and 

maximum values found in the literature were used (CIBSE, 2015). The input variables 5 to 6 reflect 

variations in building specifications, for which only minima and maxima were known. They were 

also regarded as standard normal distributions where extreme values were less likely to be selected 

than values near the mean. Since the tails of a standard normal distribution extend indefinitely, the 

previously described LHS method may generate negative numbers that are usually not supported 

by EnergyPlus. They represented only a very small proportion of the total number of samples and 

were thus set to zero.

The last two input variables (7 and 8) were design parameters, which were defined by the authors 

and could be changed through interventions. Therefore, they were assumed to be uniformly 

distributed as they may be regarded as being equally probable. The sources used to inform the shape 

of the distributions can be seen in Table 14. 

Table 14  Input variables used in MCSA, including their symbol, assumed distribution, type of variation and source

Input variable Symbol (unit) Distribution assumed Uncertainty type Source

Infiltration flow rate Q
inf

 (m3/s m2) N (0.003,0.0008) Modelling uncertainty Measured

Density p (kg/m3) N (1500,333) Specification uncertainty Technical sheet from 
manufacturer

Specific heat capacity c (J/kgK) N (5000,1000) Specification uncertainty Technical sheet from 
manufacturer

Ground temperature T
g
 (°C) N (20.0,1.7) Modelling uncertainty Measured

Internal heat gains Q
int

 (W/m2) U (100,33.3) Modelling uncertainty CIBSE (2015, Table 1)

Convective heat transfer 
coefficient of gap 

h
c
 (W/m2K) U (1.5,0.5) Modelling uncertainty CIBSE (2015, Table 3.7)

Thickness d (m) U (0.2,0.07) Specification uncertainty Defined by authors

Volume V (m3) U (20.0,6.7) Specification uncertainty Defined by authors
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Appendix F	 RESULTS OF IN-SITU MEASUREMENTS

This appendix begins by presenting the results of the in-situ measurements of the U-values and then 

goes on to describe the analysis of the thermal bridges using infrared images.

Table 15  Results of the in-situ measurements of the U-values

ID Zone Area (m2) U-value (W/Km2) Total U-value (W/Km2)

A Left side 0.438 1.225
1.232

B Top side 0.373 1.152

C Bottom side 0.373 1.069

D Centre side 0.578 0.969

E Top edge 0.246 1.410

F Bottom edge 0.246 1.210

G Left edge 0.321 1.559

H Right side 0.438 1.225

I Right edge 0.321 1.559

Figure 19 shows the thermal bridge type F (Table 15) with the thermal image (Figure 18a) and the 

corresponding calculated temperature profile along a 0.77 m long line on the wall (Figure 18b). 

The results of the full thermal bridge assessment using infrared images are reported in Table 16. 

The average indoor air temperature was 22.6 °C, while the temperature in the homogeneous wall 

areas was around 22.1°C. The corresponding value of the incidence factor of the thermal bridge 

calculated from Equation 11 was 1.17, as reported in Table 16. To evaluate the total thermal losses 

taking into account the thermal bridge effect, the corrected U-value U
corrected

 was calculated according 

to Equation 12, where I
tb

 was the weighted average of the several I
tb

 affecting each surface. 

a	 b	

Fig. 19  Thermal bridge assessment for type F: a. Thermal image; b. Temperature profile across the wall.

Table 16  Quantitative analysis of infrared images

ID Typology and description of thermal bridge Itb Affected surfaces

A Bottom corners on south building envelope (floor-wall-wall) 1.26 Floor and east, south and west walls

B Top corners on south building envelope (roof-wall-wall) 1.12 Roof and east, south and west walls

C Top corners on north building envelope (roof-wall-wall) 1.09 Roof and east, north and west walls

D Bottom corners on north building envelope (floor-wall-wall) 1.18 Floor and east, north and west walls

E Vertical corner lines wall-wall (wall-wall) 1.14 All walls

F Horizontal corner lines wall-floor 1.17 Floor and wall

G Horizontal corner lines wall-roof (roof-wall) 1.11 East and west walls

H Vertical lines wall-wall interface 
(junction of 2 wall parts on south building envelope)

1.13 South wall


