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Abstract

A modular multifunctional façade for the retrofit of shopping malls, capable of adapting to different 

climates and to the existing building features both by the presence of movable components and by 

proper sizing of the fixed ones, is under development within the European FP7 project CommONEnergy. 

In particular, this curtain-wall façade is equipped with a fixed shading system, a photovoltaic panel with 

a battery feeding the automated openings for natural ventilation. The aim of this work is to define a 

reliable parametric model for a multi-functional façade system, to support designers with a set of useful 

data for the holistic design of the façade configuration depending on climate, orientation and building 

use. Firstly, a reference zone model for the façade was devised; this had to be both representative 

of reality and smartly defined for simulation software implementation. Besides the definition of the 

façade model parameters, all unknown design parameters were identified with their minimum and 

maximum values, depending on different possible applications and environmental conditions in 

which the façade could be applied. The inputs for the model were defined in a parametric matrix and 

included: facade module size, façade orientation, climate, window typology (thermal transmittance and 

g-value), distance between the shading lamellas, tilt angle, and openable window size. The simulation 

engine was decoupled: visual comfort and artificial lighting use were assessed with Radiance, while the 

façade thermal behaviour was evaluated by means of building energy simulations in TRNSYS, taking 

into consideration the daylight assessment results. For each simulated configuration, a set of relevant 

outputs fields for Indoor Air Quality, thermal and visual comfort, and energy performance were derived. 
The main considered performance indicators were the long-term percentage of people dissatisfied, the 

number of hours when CO2 concentration was within the recommended values for each of the categories 

defined by EN 15251:2007, the illuminance provided by daylight, the energy consumption due to lighting, 

ventilation, heating and cooling, and the energy generated by the PV panel. Moreover, all outputs were 

collected in a pre-design support tool comprised of a database accessible through a filtering system to 

gather the desired performances. This work highlights the role of thermal and daylighting simulation in 

the design of an adaptive multifunctional façade through the definition of a methodology for the support 

at the pre-design phase.
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1  INTRODUCTION

“Shopping malls are sometimes perceived as ‘icons of a consumerist society’, because of their 

high energy demand, high CO
2
 emissions and waste, despite the increasing, mostly individual, 

‘green’ initiatives in the field. The Com- mONEnergy project seeks to transform shopping malls 

into lighthouses of energy efficient architecture and systems.” (Commonenergyproject.eu, 2016). 

Wholesale and retail buildings represent 28% of the EU non-residential building stock and present 

the highest specific energy demand (BPIE, 2011). Therefore, existing shopping centres offer a 

great retrofit opportunity for the reduction of their energy consumption. The EU FP7 project 

CommONEnergy (Commonenergyproject.eu, 2016) aims to re-conceptualize shopping malls through 

deep retrofitting, developing a systemic approach comprised of technologies and solution sets, 

as well as methods and tools, to realise their implementation. Modern shopping centres tend to 

include glazed envelopes in their design ensuring good day-lighting and offering a more seamless 

connection between the indoor shopping space and the outdoor environment. However, glazed 

envelope features need to be carefully evaluated in order to limit the energy consumption for air 

conditioning. Within the CommONEnergy project, among other retrofitting solutions for shopping 

centres, research and industry partners (Acciona, Bartenbach, EURAC, Sunplugged) are developing 

a modular multifunctional climate adaptive façade system. The newly developed modular climate 

adaptive façade concept outlined by (Attia, Favoino, Loonen, Petrovski, & Monge-Barrio, 2015), is 

based on an optimally designed natural ventilation and daylight control, lightweight substructure, 

enriched by rapid assembly possibilities. Thanks to its flexibility and modularity, this façade system 

is suited for retrofit applications offering the opportunity to adjust the façade design according to 

climate and building features. The high number of design possibilities raises the need for a tool that 

enables designers to make informed decisions about façade configuration, glazing materials and 

shading geometry depending on the building design constraints, such as climate, façade orientation, 

facade module size and indoor space usage. The aim of this work is to define a parametric 

simulation model to evaluate the performance of a variety of configurations of the modular 

multifunctional climate adaptive façade from both an energy and indoor environment quality 

perspective. Moreover, a preliminary design tool, based on a user-defined filtering process, has been 

developed in order to inform designers towards the optimal façade configurations depending on the 

design requirements and targets.

The first section of the paper describes the façade concept. Then, the methodology applied for 

the parametric model set up is reported: the input settings, the parametric matrix and the key 

performance indicators. Finally, an example application of the design tool is presented.

1.1 THE MODULAR MULTIFUNCTIONAL CLIMATE ADAPTIVE FACADE

The modular multifunctional climate adaptive façade system is a general replicable concept, 

adjustable for different applications and designed to be used in modular construction methods 

aiming for a high level of prefabrication (Treberspurg & Djalili, 2010). The facade modularity and its 

light weight substructure allows its application as envelope retrofit solution for most existing retail 

buildings, while its multifunctionality gives the opportunity to adjust the system to the particular 

local climate conditions and indoor space usage. 



 025 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 5 / NUMBER 1 / 2017

The façade system was developed to respond to the following functions, listed in order 

of design priority: 

 – to protect against overheating through solar gain control by combining a glazing system 

with a shading element;

 – to provide fresh air and to cool indoor space by natural ventilation by means of 

automated façade openings;

 – to supply energy for window automation with integrated PV modules;

 – to maintain transparency between indoor and outdoor while providing daylighting 

and attract customers.

The façade system consists of a modular frame made of mullions and transom with flexibility in their 

position, enabling easy integration of possible technologies such as: shading systems, automated 

openable windows and photovoltaic panels. In principle, the anchorage system allows double screen 

installation, and may be easily adapted to multiple designs, creating different geometric, aesthetic 

and energy solutions.

In the model discussed in this work, the concept of multi-functionality is ensured by the presence 

of automated openings located in the lower and upper part of the façade, enhancing single-sided 

stack ventilation (see Figure 1). Glazed façades are commonly used in retrofitting for aesthetics and 

communicative reasons but a problem due to energy performances arises, due to the transparent 

nature of the glass that critically characterizes the thermal performances of the enclosure. So, the 

proposed façade has been carefully designed for the appropriate selection of glass characteristics, 

considering climates and façade orientation needs, taking into account also shading system effects 

of a fixed lamellas system. A thin-film PV panel was integrated into the façade to generate the 

electricity needed for automatic window actuation. The thin-film photovoltaic panel included in 

the module was the same length as the façade and is 0.3 meters high. The energy provided by the 

PV supplies the power needed for automated windows; moreover, in order to store power when not 

directly needed by the actuators, a battery is integrated in the façade module, behind the PV panel.

 

FIG. 1 Main components in the façade designed by Acciona.
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2 METHODOLOGY

The model parameterization consists of running the selected model “n” times, changing the “m” 

values of “p” parameters, with n=m*p. This process allowed a set of outputs for each simulation to be 

gathered so that the façade performances for each desired configuration could be determined. 

The parametric simulation model was based on a single-zone model, intended to be representative 

of typical shopping mall environments. The reference zone was 15-meters deep with adiabatic 

boundary conditions on all the walls, except for the one that incorporated the multifunctional 

façade. The depth of the reference room was selected to consider the effects of ventilation rates on 

a representative volume of typical malls environments. The multifunctional façade module covers 

the entire external wall of the reference zone model. As far as the façade module is concerned, it was 

drawn considering a distinction between the fixed mullion and transom and the assigned frame’s 

percentage of windows installed in the module. As proof of concept, three volumes of zone were 

considered in the study: 60 m3, 90 m3 and 270 m3 for the façade module dimensions of 2[m]x2[m], 

2[m]x3[m] and 3[m]x6[m], respectively. The fixed glazed part of the window was provided with a 

fixed lamella shading system. Thermal transmittance of façade elements, such as mullions and 

window frames, were set in accordance to data provided by the façade designer (U-value ‘frame & 

mullion’=3.59 W/m2K). The first part of the process that led to the model definition was setting the 

reference zone parameters and the application of the following building physics reference points:

 – set point temperature values for the heating and cooling system are the ones recommended 

by the EN 15251-2007;

 – the natural ventilation rate has been assessed using the single-sided, two vents, buoyancy 

driven model (CIBSE,2005) 

 – the infiltration rates depend on indoor-outdoor temperature difference and wind speed according to 

Coblenz & Achenbach, (1963);

 – internal gains due to people, appliances and artificial lighting system have been provided by an 

Italian shopping malls design company.

 – Secondly, the input data were defined in order to include all the possible simulation choices for the 

desired conditions in each considered configuration and were divided into three categories:

 – climatic conditions and façade orientation; 

 – application, depending on the indoor space usage;

 – façade module size and the characteristics of the glazing system and shadings configuration. 

Finally, the simulation results were post-processed in order to represent Indoor Air Quality, thermal 

and visual comfort and energy performance of the reference zone. The main considered performance 

indicators were the long- term percentage of people dissatisfied (LPD) (Carlucci, 2013), the number of 

hours in each IAQ category, the energy consumption due to lighting, ventilation, heating and cooling 

demand and, the energy generation from the PV panel. 

The developed tool produced simulation results in different plots guiding users towards the optimal 

selection of facade configuration.



 027 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 5 / NUMBER 1 / 2017

2.1 BUILDING ENERGY SIMULATION MODEL

The first step of the work concerned the implementation of the façade model in the TRNSYS 

simulation environment. TRNSYS was chosen for its flexibility as energy simulation software 

through its compatibility with other software used during this study. Within the type 56 model, 

different possible algorithms were available for the modelling of the heat transfer and solar radiation 

exchange between the façade and the indoor and outdoor environment.

The model geometry was drawn with SketchUp using a Trnsys3D plug-in and then imported into 

the TRNSYS simulation environment (Klein et al, 2010); in particular, the thermal behaviour of the 

reference zone was modelled by Type 56.

Given the high number of simulations for the parametric analysis, a trade-off between computation 

time and model accuracy had to be considered. Thus, two geometry modelling approaches (standard 

and detailed model geometry) and two radiation calculation modes (detailed (Gebhart, 1971) or 

‘standard’ (Seem, 1987) were analysed and compared in order to quantify the influence of the 

different model approaches on simulation results, in particular concerning windows and frame 

geometry inputs. The deviation in output trends showed the need to use a detailed model geometry 

that considered the geometrical distinction between the frame of the windows and the mullions 

and transoms of the module. Furthermore, the standard radiation model led to a reduction in the 

computational time of the simulation (71.93 seconds down to 29 seconds) compared to the detailed 

radiation model, without affecting the results in any critical way (Pinotti, 2016). Therefore, the 

standard radiation model (Seem, 1987) of TRNSYS was used through the simulation process.

The PV power production was evaluated using the TRNSYS Type 94 model (Klein et al, 2010). This 

component allowed the electrical performance of a photovoltaic array to be modelled in a detailed 

way, knowing all the parameters of the PV module. It was chosen in the simulation because of 

its easy implementation in the whole model and thanks to the possible interaction with other 

components, such as batteries or regulators.

2.2 INPUTS DEFINITION

Table 1 reports the facade configurations used in the parametric analysis. Façade module size and 

configuration resulted in different proportions between openable windows and fixed ones, with a 

consequent change in the percentage of frame in each window. Different module sizes, assumed 

to be representative of a real possible application case for a shopping centre façade module, 

were investigated because the different percentage of frame area over the whole façade module 

influenced significantly the thermal performance of the envelope. The dimension of the openings 

and louver was calculated in order to ensure three levels of pre-defined air change rates (4, 6 and 8 

ACH) when the outside temperature is 25°C and there is 1 K difference between indoor and outdoor 

temperature (CIBSE, 2005). 
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FAÇADE 
WIDTH

FAÇADE 
HEIGHT

ZONE 
DEPTH

FRAME % 
OPEN-
ABLE 
WINDOW

FRAME 
% FIXED 
WINDOW

OPEN-
ABLE 
WINDOW 
WIDTH

OPEN-
ABLE 
WINDOW 
HEIGHT

OPEN-
ABLE 
WINDOW 
AREA

FIXED 
WINDOW 
AREA

PV AREA

[M] [M] [M] [-] [-] [M] [M] [M2] [M2] [M2]

3 6 15 22% 9% 1.5 0.60 0.90 6.40 0.9

3 6 15 17% 9% 1.5 0.90 1.35 5.97 0.9

3 6 15 14% 9% 1.5 1.20 1.80 5.54 0.9

2 3 15 31% 15% 1 0.42 0.42 1.74 0.6

2 3 15 24% 16% 1 0.63 0.63 1.54 0.6

2 3 15 21% 17% 1 0.85 0.85 1.33 0.6

2 2 15 36% 21% 1 0.35 0.35 0.85 0.6

2 2 15 27% 23% 1 0.52 0.52 0.69 0.6

2 2 15 23% 27% 1 0.69 0.69 0.53 0.6

TABLE 1 Possible configuration of the facade module

Three different typologies of building use have been considered in the parameterization: ‘Shops’ 

(SHP), ‘Common Area’ (CMA) and ‘Restaurant’ (RST); different building use implies different lighting, 

appliances and occupancy density and profiles, and, therefore different internal gains. It must be 

noted that, in the case of ‘Shop’, no shading system were applied on the façade because each façade 

module was supposed to be a shop window. All orientations (North, South, East and West) for each 

configuration of the reference zone were simulated but for north-oriented façades no shading system 

was applied on the façade.

A review of minimum requirements for national regulations and standards set by energy efficient 

building certification schemes (see references in Table 2) as well as on available products on 

the market was carried out to define the most likely ranges of U-values and g-values for glazed 

components in several European countries.  The result of this part of study gave realistic thermal 

transmittance and their respective solar gain values, representing the state of the art in the field 

of windows and glazing technologies that complied with the current regulatory framework. Upper 

limits for U-values referred to the minimum requirements for national regulations. The lower limit 

referred to the minimum U-value recommended by the standards set by energy efficient buildings 

certification schemes. Feasible ranges of g-values were assigned to each U-value, taking into account 

the state of the art of the glazing industry (agc-glass.eu, 2016). Window glazing system models were 

developed using the WINDOW 7.4 database (Lawrence Berkeley National Laboratory, 2011). Table 2 

reports the glazing U-value and g-value ranges for several locations.
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Country
Reference 
city

Heating 
Degree 
Days (HDD)

Uw-value 
[W/m2 K] 
(max)

g-value 
(max)

g-value 
(min)

Uw-value 
[W/m2 K]  
(min)

g-value 
(max)

g-value 
(min)

Norway Trondheim 5211 1.201 0.67 0.20 0.802 0.63 0.25

UK London 2800 1.804 0.52 0.29 0.853 0.63 0.25

Austria Wien 2844 1.905 0.73 0.25 0.853 0.63 0.25

Italy Modena 2529 2.207 0.52 0.29 1.308 0.67 0.22

Italy Palermo 585 3.007 0.77 0.40 1.308 0.67 0.22

Spain Seville 1460 4.206 0.61 0.37 1.253 0.67 0.20

1 (Kommunal- og moderniseringsdepartementet, 2010)
2 (Norsk Standard, 2012)
3 (Passivhaus Institut, 2016)
4 (British Department for Comunities and Local Government, 2013)
5 (Austrian Institute for Building Technology, 2007)
6 (Ministerio de Fomento, 2013)
7 (Dipartimento di Energia del Ministero per lo Sviluppo dell’Economia, 2013)
8 (CasaClima, 2014)

TABLE 2 Glazing U-values and g-values ranges.

In order to prevent direct sunlight from entering the zone, a fixed shading system was evaluated for 

all the large central windows in the façade modules, except for the ‘shop’ application and for north-

oriented cases. Among the parameterization variables the tilt angle and spacing of the lamella were 

also considered. In order to evaluate the effect due to the shading system, a dedicated model, and 

the related parameterization (in Figure 2 all the combinations of in- puts for the shading system 

parameterization are presented), were undertaken using Ladybug+Honybee (Sadeghipour Roudsari 

& Pak, 2013) plug-in for Grasshopper (McNeel, Rutten, & Associates, 2007). Ladybug+Honybee allows 

for the use of well validated Radiance software (Ward, 1989), within a parametric environment 

such as Grasshopper, to predict the reduction of solar radiation entering the zone and the daylight 

availability within the zone. 

FIG. 2 All combinations for the shading system parameterization – lines link the available inputs for the configurations 
(Trondheim, Modena and Sevilla cases)
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Essentially, the hourly shading effect induced by the fixed lamella has been translated in the TRNSYS 

model as reduction of direct and diffuse solar radiation entering the zone. Moreover, the hourly level 

of internal illuminance predicted by the daylighting simulation has been used within TRNSYS to 

control artificial lighting dimming. 

The parametric analysis was run through the JE+ software (Zhang & Korolija, 2010) in full-factorial 

mode. JE+ soft- ware allowed parameterization simulations on the TRNSYS input file. Therefore, for 

each available combination of inputs, one simulation had to be run. The parametric analysis led 8424 

façade configurations, or simulation runs (Figure 3), 2808 for each climate. 

FIG. 3 Summary of parametric analysis variables (Trondheim, Modena and Seville climate)

2.3 OUTPUTS DEFINITION

Table 3 reports the key performance indicators from the simulation results post-processing. These 

outputs were chosen arbitrarily in order to allow considerations both for the indoor environment 

quality (indoor air quality, thermal comfort, daylighting) and on the energy consumption 

of the reference room.

All the outputs and their trends were analysed using Matlab-based filtering methods. Starting from 

the huge amount of available combinations of inputs, each leading to different outcomes, a series of 

significant graphical layouts were predefined within Matlab, in order to have a general view of all the 

simulated configurations and to map their outputs; then, keeping the layout of these general graphs, 

the need for more specific selection through the available configurations arose, in order to easily 

display on those graphs only the desired ranges of outputs, while excluding the unwanted cases. So, 

a series of filters on the input and output parameters were implemented and users could select their 

own preferences excluding undesired ranges for specific variables, thus obtaining the optimal facade 

configuration for any given boundary conditions. Users could define the optimisation parameter, 

depending on their design targets. For instance, designers may decide to give priority to the comfort 

of occupants over energy consumption. By filtering their selection, users can set their order of 

priorities. This simple design tool to support façade designers, based on filtered graphs, is meant to 

be the foundation for a more user-friendly and accessible tool, that will be developed in the future. 

Table 4 summarizes two different filtering selection procedures available in the tool. So, following 

one of the two filtering procedures, designers can go through all the available configurations for the 

façade and end up with just a few cases, whose characteristics depend on the filters applied. 

The graph for the LPD filtering relates the percentage of hours with an IAQ in categories 1 or 2 

(y-axis) with the percentage of LPD (x-axis); moreover, the colour of the indicator gives information 

on the characteristics of the type of glazing used in each facade configuration (U-value, g-value and 

visible transmittance).
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As far as the LIGHT CONSUMPTION filter is concerned, it was decided to use data on artificial lighting 

consumption as indirect indicators of the value of available daylighting inside the zone. Obviously, 

the lower the artificial lighting consumption results, the higher the daylighting is. The second filter 

was used to ensure good levels of daylight. By applying this filter, the light consumption (y-axis) was 

related to the configuration of the shading system: distance between lamella (x- axis) and lamella 

angle degree (colour of the indicator).

OUTPUT UNIT DESCRIPTION REFERENCE

SPECIFIC HEATING DEMAND kWh/m2 -

SPECIFIC COOLING DEMAND kWh/m2 -

LONG-TERM PERCENTAGE OF 
DISSATISFIED

-

The necessity of using such an indicator instead of the 
most known PPD is due to the will of having an output for 
each simulated configuration, summarizing the result of all 
the considered periods.

(Carlucci, 2013)

LIGHT CONSUMPTION kWh

Calculation of the lighting consumption has been possible 
thanks to combined parameterizations regarding the 
shading system, giving as result the overall luminous flux 
entering the zone from daylight and considering a designed 
enlightenment value.

MECHANICAL VENTILATION 
CONSUMPTION

kWh
The electric energy required by fans for providing airflows 
required to keep an acceptable IAQ, considering a specific 
fan power of 0.75 Wh/m3.

N° HOURS WITH NATURAL 
VENTILATION

h
Number of hours over the occupied period when natural 
ventilation can be activated.

N° HOURS WITH EFFECTIVE 
NATURAL VENTILATION

h
Number of hours over the occupied period when natural 
ventilation can be activated and provides same or higher 
airflows than mechanical ventilation

N° HOURS IAQ CATEGORY 1

h
CO2 concentration in the air has been calculated and 
Indoor Air Quality categories have been assigned to the 
environment

(EN 15251,2007)
N° HOURS IAQ CATEGORY 2

N° HOURS IAQ CATEGORY 3

N° HOURS IAQ CATEGORY 4

N° HOURS  THERMAL CATEGORY 1

h

Thermal categories have been assigned to the room 
environment after having compared the running outdoor 
mean temperature with the operative temperature inside 
the room

(EN 15251,2007)N° HOURS  THERMAL CATEGORY 2

N° HOURS  THERMAL CATEGORY 3

OVERHEATING HOURS
h

Overheating and overcooling number of hours exceeding 
thermal categories limits

(EN 15251,2007)
OVERCOOLING HOURS

OVERHEATING DEGREE
°C Estimation of the severity of overheating and overcooling (EN 15251,2007)

OVERCOOLING DEGREE

PV POWER GENERATED kWh PV power generated by the façade PV module

PV POWER DIRECTLY TO LOAD kWh
Power generated by the PV being directly used by the 
actuators of windows

POWER SUPPLY FROM GRID kWh
Electric energy supplied from the grid to accomplish 
window automation demand when battery is not charged 
and no energy is generated by PV

TABLE 3 Output from the simulation

Remaining configurations were filtered on the base of total consumption available, choosing cases 

with the lowest energy demand: heating system, cooling system, mechanical ventilation, light 

consumptions were considered; moreover, power demand from the grid was taken into account in 

the total amount of energy consumption. Therefore, in the TOTAL CONSUMPTION filter’s graph, the 

total energy consumption (x-axis) was related to the percentage of hours with an IAQ in categories 

1 or 2 (y-axis) and LPD value being identified using the colour scale.
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COMFORT PRIORITY LOW CONSUMPTION PRIORITY

1. LPD filter 1. TOTAL CONSUMPTIO+POWER FROM GRID filter

2. LIGHT CONSUMPTION filter 2. LIGHT CONSUMPTION filter

3. TOTAL CONSUMPTIO+POWER FROM GRID filter 3. LPD filter

4. FINAL DESIGN CHOICE 4. FINAL DESIGN CHOICE

TABLE 4 Different filtering procedures depending on the design priority of the designer

Finally, a few cases remain, all with very similar comfort and consumption characteristics; therefore, 

the ultimate selection is related to designer’s preferences on shading configurations (slat orientation 

angle and distance), proportions of the façade module and type of the glazing to be used.

3 RESULTS

3.1 DESIGN TOOL METHODOLOGY

Given the parametric model and its output database, a methodology has been set up to support the 

choices of designers under a performance based approach. A filtering method has been chosen 

in order to pass from all the database configurations to the target ones. The process is based on 

preferences of designers; in the tool, these preferences were represented by filters applied to the 

displayed results. By doing this, the configurations with undesired values for a certain input or output 

could be excluded from the filtering procedure. By the end of the process, only combinations with 

similar designed performances remain and the user may visualise the results of their preferences 

applied on all the possible configurations, facilitating their final choice.

3.2 EXAMPLE APPLICATION OF THE DESIGN TOOL

One applied example of the façade configuration selection process is shown below: it was used to 

design a 3m x 6m south-oriented façade in a ‘restaurant’ building application in Seville. The priority 

in the choice of allowed ranges was given to the occupants’ comfort level.
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Step 1: LPD filtering

FIG. 4 LPD % - Seville_3x6_RST_S

The first filter selected was the one regarding thermal comfort (LPD). So, after evaluating the 

available range for the LPD in this specific case while trying to keep lowest values (PPD<10% as 

recommended by ANSI/ASHRAE Standard 55-2013), filters on LPD were applied. In Figure 4, all 

the configurations for ‘restaurant’ 3x6 south-oriented Seville facade were reported and a filter on 

LPD<11 was selected.

Step 2: Light consumption filtering

FIG. 5 Light consumption and shading configuration - Seville_3x6_RST_S

Among the façade configurations with higher thermal comfort, a filter on artificial lighting 

consumption was applied setting a threshold of 26 kWh/m2 (Figure 5); this value left many cases for 

the final choice, while simultaneously reducing available configurations.
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Step 3: Consumption filtering

In this example, on the base of consumption range showed in Figure 6, total energy consumption 

filter will be set to 147 kWh/m2 as maximum value. The remaining configurations are 

reported in Figure 7.

FIG. 6 Total consumption related to IAQ and LPD - Seville_3x6_RST_S

 

FIG. 7 Remaining cases after filtering on consumptions, ID simulation displayed - Seville_3x6_RST_S
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Step 4: Design choice

Table 5 summarizes the filtering process for the applied example described and lists the resulting 

optimal façade configurations among which the designer could choose.

STARTING 
CONDITION

SEVILLE 3X6 MODULE “RST” APPLICATION SOUTH-ORIENTED

DESIGN PRIORITY COMFORT

FILTER LPD < 11%

FILTER LIGHT CONSUMP-
TION

< 26 kWh/m2

FILTER TOTAL CONSUMP-
TION

< 14 kWh/m2

FINAL DESIGN 
CHOICES

SHADING 
CONFIGURATION 
AND FACADE 
PROPORTIONS

ID SIMULATION SLAT ANGLE 
DEGREE

DISTANCE 
 BETWEEN 
 SHADINGS [cm]

AREA OPENABLE 
WINDOW [m2]

499 15° 12 SMALL

715 15° 18 SMALL

716 15° 18 MEDIUM

931 15° 24 SMALL

932 15° 24 MEDIUM

1579 30° 18 SMALL

1795 30° 24 SMALL

1796 30° 24 MEDIUM

2659 45° 24 SMALL

TABLE 5 Table 5: Summary of the filters applied in the example described and available configurations

4 CONCLUSIONS

This paper presents a parametric design tool, suited to support the design process of a modular 

multifunctional façade allowing the façade itself the possibility of being climate-adaptive. The tool is 

based on a filtering procedure, generating graphs and driving the user to identify the most optimal 

façade configuration(s). The available configurations of the façade module – i.e. façade orientation, 

façade proportions and dimensions and glazing characteristics - were firstly modelled in TRNSYS 

and secondly simulated through a fully-factorial parameterization. Therefore, a smart graphical 

organization of data has been fundamental in order to manage the high number of results.  The 

choice of the optimally performing configuration for a specific condition depends on the priority of 

the designer that was assumed to be low-energy consumption or high-thermal comfort oriented. 

Although the tool is at an early and prototypical stage (the knowledge of the adopted Matlab code is 

required), it has the potential to support the designer in the process of defining the most appropriate 

façade module for a particular climate condition; the tool becomes very useful when filtering the 

huge amount of configurations given by the parameterization, selecting the most relevant cases 

depending on the designer’s preferences. Further improvements should be undertaken to develop 

the filtering design tool, enriching it with an intuitive interface, making it more user-friendly.
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