@article{Greiner_Böckmann_Weber_Ostermann_Schaefer_2022, title={CoolSkin: A Novel Façade Design for Sustainable Solar Cooling by Adsorption}, volume={10}, url={https://jfde.eu/index.php/jfde/article/view/252}, DOI={10.47982/jfde.2022.powerskin.3}, abstractNote={<p>The article investigates the dependencies of façade design and construction in the integration of a sustainable solar-powered cooling system based on closed adsorption. The presented work focuses on the possible design variants of the envelope surface of the façade -integrated adsorber. The principle of adsorption cooling is presented and, based on this, architectural options for façade integration are investigated. This is done both constructively and visually. For each variant, the solar gains are summed up and compared with each other. A functionally designed adsorber, similar to a flat plate collector, serves as a reference and starting point for the modifications. It provides the comparative value for the energy evaluation. The modification is limited to the visible surface of the absorber. The texture of the solar adsorbing sheet was changed and the glazing used was replaced by ETFE cushions and by a novel ETFE vacuum panel. Finally, the solar simulation results were integrated into the higher-level system simulation to evaluate the resulting gain in cooling capacity. The results show that the system could generate more than 100 W per installed square metre of adsorber façade. Furthermore, higher solar gains compared to the reference case can be obtained at particular times of the day due to geometry and material changes. However, the modifications always lead to a reduction of the total cooling power. In conclusion, the simulation results reveal that design flexibility is possible, but currently the studied design variants have a lower cooling capacity compared to the solely functionally designed adsorber.</p>}, number={2}, journal={Journal of Facade Design and Engineering}, author={Greiner, Andreas and Böckmann, Olaf and Weber, Simon and Ostermann, Martin and Schaefer, Micha}, year={2022}, month={Dec.}, pages={39–56} }