Visual assessment of BIPV retrofit design proposals for selected historical buildings using the saliency map method


  • Ran Xu CC EASE, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
  • Stephen Wittkopf CC EASE, Lucerne University of Applied Sciences and Arts, Horw, Switzerland




BIPV, visual assessment, visual impact, solar retrofit, saliency map


With the increasing awareness of energy efficiency, many old buildings have to undergo a massive facade energy retrofit. How to predict the visual impact which solar installations on the aesthetic cultural value of these buildings has been a heated debate in Switzerland (and throughout the world). The usual evaluation method to describe the visual impact of BIPV is based on semantic and qualitative descriptors, and strongly dependent on personal preferences. The evaluation scale is therefore relative, flexible and imprecise. This paper proposes a new method to accurately measure the visual impact which BIPV installations have on a historical building by using the saliency map method. By imitating working principles of the human eye, it is measured how much the BIPV design proposals differ from the original building facade in the aspect of attracting human visual attention. The result is directly presented in a quantitative manner, and can be used to compare the fitness of different BIPV design proposals. The measuring process is numeric, objective and more precise.

How to Cite

Xu, R., & Wittkopf, S. (2015). Visual assessment of BIPV retrofit design proposals for selected historical buildings using the saliency map method. Journal of Facade Design and Engineering, 2(3-4), 235–254.




Borji, A., & Itti, L. (2013). State-of-the-Art in Visual Attention Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 185-207. doi:10.1109/TPAMI.2012.89.

Bundesamt für Energie, & Eidgenössische Kommission für Denkmalpflege (2009). Energie und Baudenkmal – Empfehlungen für die energetische Verbesserung von Baudenkmälern.

Bylinskii, Z., Judd, T., Durand, F. D., Oliva, A., & Torralba, A. (n.d.). MIT Saliency Benchmark. Retrieved December 7, 2014, from

Chalmers, A., & Debattista, K. (2009). Level of Realism for Serious Games. Presented at the VS-GAMES 09 Proceedings of the 2009 Conference in Games and Virtual Worlds for Serious Applications, Coventry, United Kingdom: IEEE Computer Society. doi:10.1109/VS-GAMES.2009.43

Chiabrando, R., Fabrizio, E., & Garnero, G. (2009). The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renewable and Sustainable Energy Reviews, 13(9), 2441-2451.

Dessi, V. (2013). Methods and tools to evaluate visual impact of solar technologies in urban environment (pp. 1-6). Presented at the Cisbat 2013, Laussane, Switzerland.

Frontini, F., Maturi, L., Munari Probst, M. C., Roecker, C., & Scognamiglio, A. (2013). Designing photovoltaic systems for architectural integration – Criteria and guidelines for product and system developers. (C. Farkas) Report T.41. A.3/2: IEA SHC Task 41 Solar Energy and Architecture (pp. 1-92).

Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency (pp. 545-552). Presented at the Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems 2006, Vancouver, Canada.

Häne, S. (2012, February 8). Heimatschutz warnt vor «Solarwelle» in Altstadt. Retrieved December 2, 2014, from

Hubel, D. H. (1995). Eye, brain, and vision. (2nd ed.). W. H. Freeman publishers.

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194-203.

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254-1259.

Judd, T., Durand, F., & Torralba, A. (2012). A Benchmark of Computational Models of Saliency to Predict Human Fixations. Computer Science and Artificial Intelligence Laboratory Technical Report.

Judd, T., Ehinger, K., Durand, F., & Torralba, A. (n.d.). JuddSaliencyModel/README.txt. Retrieved December 2, 2014, from

Kanton Basel (2013). Richtlinie für Solaranlagen im Kanton Basel-Stadt (Version Januar 2013).

Kanton Bern (2012). Richtlinien – Baubewilligungsfreie Anlagen zur Gewinnung erneuerbarer Energien (Version Juni 2012).

Kanton Luzern (2014). Richtlinien Solaranlagen – Photovoltaische/Solarthermische Anlagen (Version April 2014).

Kanton Nidwalden, & Fachstelle für Denkmalpflege (2010). Wegleitung Bauinventar (pp. 1-25).

Kanton Thurgau (2009). Solaranlagen richtig gut – Richtlinien zur Anwendung von Artikel 18a des Bundesgesetzes über die Raumplanung (Version Juli 2009).

Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4, 219-227.

Longhurst, P., Debattista, K., & Chalmers, A. (2006). A GPU based Saliency Map for High-Fidelity Selective Rendering (pp. 1-9). Presented at the AFRIGRAPH 2006 4th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction.

López, C. S. P., & Frontini, F. (2014). Energy efficiency and renewable solar energy integration in heritage historic buildings. Energy Procedia, 48, 1493-1502. doi:10.1016/j.egypro.2014.02.169

Lucchi, E., Garegnani, G., Maturi, L., & Moser, D. (2014). Architectural integration of photovoltaic systems in historic districts – The case study of Santiago de Compostela (pp. 1-15). Presented at the International Conference in Energy Efficiency in Historic Buildings, Madrid, Spain.

Ludin, P. W. (2013, February 9). Keine Solaranlagen auf Walliser Kirchendächern. Retrieved December 2, 2014, from

Munari Probst, M. C., & Roecker, C. (2009). Photovoltaic vs. Solar Thermal: very different building integration possibilities and constraints (pp. 1-6). Presented at the Cisbat 2009, Lausanne, Switzerland.

Munari Probst, M. C., & Roecker, C. (2011). Urban acceptability of building integrated solar systems: LESO-QSV approach. Presented at the ISES Solar World Congress 2011, Kassel, Germany.

Munari Probst, M. C., & Roecker, C. (2012). Criteria for architectural integration of active solar systems IEA Task 41, Subtask A. (2014). Energy Procedia, 30, 1195-1204. doi:10.1016/j.egypro.2012.11.132

RPG. Bundesgesetz über die Raumplannung (Raumplanungsgesetz, RPG), vom 22. Juni 1979 (Stand on 1. Mai 2014).

Ruesch, J., Lopes, M., Bernardino, A., Hörnstein, J., Jose Santos-Victor, & Pfeifer, R. (2008). Multimodal Saliency-Based Bottom-Up Attention, A Framework for the Humanoid Robot iCub (pp. 1-6). Presented at the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA.

Stadt Zürich Hochbaudepartement. (2008, August 22). Solaranlagen in der Stadt Zürich erwünscht. Retrieved December 2, 2014, from

Swiss Federal Constitution (2014). Bundesverfassung der Schweizerischen Eidgenossenschaft vom 18. April 1999 (Stand on 18. Mai 2014).

Torres-Sibille, A. D. C., Cloquell-Ballester, V.-A., Cloquell-Ballester, V.-A., & Artacho Ramírez, M. Á. (2009). Aesthetic impact assessment of solar power plants: an objective and a subjective approach. Renewable and Sustainable Energy Reviews, 13(5), 986-999.

Torres-Sibille, A. D. C., Garcı́a, L., & Ayuga, F. (2010, October). Visual impact assessment of human interventions of the landscape: The case of wind farms and solar power plants. Universidad Politécnica de Valencia.

Vassiliades, C., Savvides, A., & Michael, A. (2014). Architectural Implications in the Building Integration of Photovoltaic and Solar Thermal systems – Introduction of a taxonomy and evaluation methodology (pp. 1-7). Presented at the World Sustainable Building 2014, Barcelona, Spain.

Vitelli, J. (2013, September 1). Interpellation Nr. 60 (September 2013) – betreffend fragwürdige Richtlinien für Solaranlagen. Retrieved December 2, 2014, from

Von Arx, S. (2013, October 2). Solaranlage auf Kirchendach: «Das Bauvorhaben kann nicht bewilligt werden». Retrieved December 2, 2014, from

Wang, S., & Tian, Y. (2011). Indoor Signage Detection Based on Saliency Map and Bipartite Graph Matching (pp. 518-525). Presented at the 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops BIBMW, Atlanta, USA.

Ward, G., Others. (n.d.). Radiance. Retrieved from

Wittkopf, S., Yang, X., & XU, R. (2014). Reflection from PV facades and roofs – New assessment methods based on annual weather data. Presented at the EU PVSEC 2014, Amsterdam, Netherlands.

Xu, R. (2014). Visuelle Beurteilung der BIPV. Presented at the Swiss Bau, Basel, Switzerland.

Yang, X., Grobe, L., & Wittkopf, S. (2013). Simulation of reflected daylight from building envelopes (pp. 1-8). Presented at the 13th Conference of International Building Performance Simulation Association, Chambery, France.

Yu, P. M., Cheng, C. L., Liao, L. M., & Yu, Y. T. (2009). An Evaluation and Benchmarking Study of the Building Integrated Photovlatic (BIPV) (pp. 1-14). Presented at the Proceedings of Green Building Towards Eco-City, Taipei, Taiwan.