retrofitting candidates
Retrofitting Potential of Building envelopes Based on Semantic Surface Models Derived From Point Clouds

Authors

Downloads

DOI:

https://doi.org/10.47982/jfde.2022.powerskin.8

Keywords:

retrofitting potential, LCA, point cloud, semantic enrichment

Abstract

To meet the climate goals of the Paris agreement, the focus on energy efficiency needs to be shifted to increase the retrofitting rate of the existing building stock. Due to the lack of usable information on the existing building stock, reasoning about the retrofitting potential in early design stages is difficult. Therefore, deconstructing and building new is often regarded as the more reliable and economical option. Digital methods are missing or not robust enough to capture and reconstruct digital models of existing buildings efficiently and automatically derive reliable decision-support about whether demolition and new construction or retrofitting of existing buildings is more suitable. This paper proposes a robust, automated method for calculating existing buildings' life cycle assessments (LCA) using point clouds as input data. The main focus lies in bridging the gap between point clouds and importing semantic 3D models for LCA calculation. Therefore, the automation steps include a geometric transformation from point cloud to 3D surface model, followed by a semantic classification of the surfaces to thermal layers and their materials by assuming the surface elements by building age class.

How to Cite

Selimovic, E., Noichl, F., Forth, K., & Borrmann, A. (2022). Retrofitting Potential of Building envelopes Based on Semantic Surface Models Derived From Point Clouds. Journal of Facade Design and Engineering, 10(2), 127–140. https://doi.org/10.47982/jfde.2022.powerskin.8

Published

2022-12-06

References

Akbarieh, A., Jayasinghe, L. B., Waldmann, D., & Teferle, F. N. (2020). BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability, 12(7), 2670. https://doi.org/10.3390/su12072670

BBSR, & BBR (2019). Ökobilanzierung und BIM im Nachhaltigen Bauen [Life Cycle Assessment and BIM in Sustainable Construction]. Retrieved from https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/2NachhaltigesBauenBauqualitaet/2019/oekobilanz-bim/01-start.html

BBSR, Ö. (2022, May 20). ÖKOBAUDAT. Retrieved from https://www.oekobaudat.de/en.html

BMUB (2017). Bewertungssystem Nachhaltiges Bauen (BNB). Büro- und Verwatungsgebäude. Modul Komplettmodernisierung. BNB_BK 1.1.1: Ökologische Qualität. Wirkungen auf die globale und lokale Umwelt. Treibhausgaspotential (GWP) [Sustainable Building Rating System (BNB). Office and administration buildings. Module whole-building modernization. BNB_BK 1.1.1: Environmental quality. Effects on the global and local environment. Greenhouse gas potential (GWP)]. Retrieved from https://www.bnb-nachhaltigesbauen.de/bewertungssystem/buerogebaeude/steckbriefe-bnb-bk-2017/

Borrmann, A. (2015). Building Information Modeling: Technologische Grundlagen und Industrielle Praxis [Building Information Modeling: Technological Basics and Industrial Practice]. VDI-Buch Ser. Wiesbaden: Springer Fachmedien Wiesbaden GmbH. Retrieved from https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=3567925

CAALA (2020, August 3). Ihr digitaler Assistent für ganzheitliches Entwerfen. – CAALA [Your digital assistant for holistic design. – CAALA]. Retrieved from https://caala.de/

Chen, Z. (2021). Learning to Reconstruct Compact Building Models from Point Clouds (Master Thesis). Delft University of Technology. Retrieved from https://repository.tudelft.nl/islandora/object/uuid:e33e7fa1-118e-41d8-904f-5f03eb36e887?collection=education

CloudCompare (2022). CloudComapre (Version 2.12.1) [Computer software]. CloudCompare: CloudCompare. Retrieved from http://www.cloudcompare.org/

Coughlan, J. M., & Yuille, A. L. (2000). The Manhattan World Assumption: Regularities in scene statistics which enable Bayesian inference.

Dawson-Haggerty et al. (2019). Trimesh (Version 3.2.0) [Computer software]. Retrieved from https://trimsh.org/

Abbrucharbeiten: Grundlagen, Vorbereitung, Durchführung [Demolition work: Fundamentals, preparation, execution]. (2., aktualisierte und erw. Aufl.) (2007). Köln: R. Müller.

Fileformat.info (2022, May 11). Wavefront OBJ: Summary from the Encyclopedia of Graphics File Formats. Retrieved from https://www.fileformat.info/format/wavefrontobj/egff.htm

Ge, X. J., Livesey, P., Wang, J., Huang, S., He, X., & Zhang, C. (2017). Deconstruction waste management through 3d reconstruction and bim: A case study. Visualization in Engineering, 5(1), 1–15. https://doi.org/10.1186/s40327-017-0050-5

Hollberg, A., Lichtenheld, T., Klüber, N., & Ruth, J. (2018). Parametric real-time energy analysis in early design stages: A method for residential buildings in Germany. Energy, Ecology and Environment, 3(1), 13–23. https://doi.org/10.1007/s40974-017-0056-9

Kazhdan, M., & Hoppe, H. (2013). Screened poisson surface reconstruction. ACM Transactions on Graphics, 32(3), 1–13. https://doi.org/10.1145/2487228.2487237

Li, M., Wonka, P., & Nan, L. (2016). Manhattan-World Urban Reconstruction from Point Clouds. In (pp. 54–69). Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_4

Loga, T., Diefenbach, N., & Born, R. (2015). Deutsche Gebäudetypologie: Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden [German building typology: Exemplary measures for improving the energy efficiency of typical residential buildings]. Darmstadt.

Macher, H., Roy, L., & Landes, T. (2021). Automation of windows detection from geometric and radiometric information of point clouds in a scan-to-BIM process. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2021, 193–200. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-193-2021

Matthias Hüttmann (2018). Graue Energie Abreißen oder sanieren? [Demolishing or retrofitting embodied energy?] BUND-Jahrbuch 2018 Ökologisch Bauen Und Renovieren: Nachhaltige Orientierung für Bauherren, 16–19. Retrieved from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.bund-bawue.de%2Ffileadmin%2Fbawue%2FDokumente%2FThemen%2FKlima_und_Energie%2FOEkologisch_Bauen_und_Renovieren_2018_Graue_Energie._Abreissen_oder_sanieren.pdf&clen=913329&chunk=true

MERKO (2022, May 11). DEMO DATA | Drupal. Retrieved from http://www.merko.lv/en/demo-data

Nan, L., & Wonka, P. (2017). PolyFit: Polygonal Surface Reconstruction from Point Clouds. https://doi.org/10.1109/ICCV.2017.258

Park, J., & Cho, Y. K. (Eds.) (2021). Laser Intensity-assisted Construction Material Classification in Point Cloud Data using Deep Learning. Orlando, FL.

Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum, 26(2), 214–226. https://doi.org/10.1111/j.1467-8659.2007.01016.x

Schneider, S., & Coors, V. (2018). Automatische Extraktion von Fenstern in 3D Punktwolkenmittels einer hierarchischen Methode [Automatic extraction of windows in 3D point clouds using a hierarchical method] (38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München No. 27). München. Retrieved from https://www.researchgate.net/publication/323749844_Automatische_Extraktion_von_Fenstern_in_3D_Punktwolken_mittels_einer_hierarchischen_Methode

Taraben, J., & Kraemer, K. (2021). Automatisierte Generierung von Stadtmodellen aus UAS-Befliegungen für die energetische Bewertung von Quartieren [Automated generation of city models from UAS flights for the energetic evaluation of neighborhoods] (32. Forum Bauinformatik 2021).

Umweltbundesamt (2021, November 29). Abfallaufkommen [Volume of Waste]. Retrieved from https://www.umweltbundesamt.de/daten/ressourcen-abfall/abfallaufkommen#bau-abbruch-gewerbe-und-bergbauabfalle

Volk, R., Luu, T. H., Mueller-Roemer, J. S., Sevilmis, N., & Schultmann, F. (2018). Deconstruction project planning of existing buildings based on automated acquisition and reconstruction of building information. Automation in Construction, 91, 226–245. https://doi.org/10.1016/j.autcon.2018.03.017

Yang, J., Shi, Z.‑K., & Wu, Z.‑Y. (2016). Towards automatic generation of as-built BIM: 3D building facade modeling and material recognition from images. International Journal of Automation and Computing, 13(4), 338–349. https://doi.org/10.1007/s11633-016-0965-7