solar cooling facade

A Novel Façade Design for Sustainable Solar Cooling by Adsorption





solar cooling, adsorption, façade integrated cooling


The article investigates the dependencies of façade design and construction in the integration of a sustainable solar-powered cooling system based on closed adsorption. The presented work focuses on the possible design variants of the envelope surface of the façade -integrated adsorber. The principle of adsorption cooling is presented and, based on this, architectural options for façade integration are investigated. This is done both constructively and visually. For each variant, the solar gains are summed up and compared with each other. A functionally designed adsorber, similar to a flat plate collector, serves as a reference and starting point for the modifications. It provides the comparative value for the energy evaluation. The modification is limited to the visible surface of the absorber. The texture of the solar adsorbing sheet was changed and the glazing used was replaced by ETFE cushions and by a novel ETFE vacuum panel. Finally, the solar simulation results were integrated into the higher-level system simulation to evaluate the resulting gain in cooling capacity. The results show that the system could generate more than 100 W per installed square metre of adsorber façade. Furthermore, higher solar gains compared to the reference case can be obtained at particular times of the day due to geometry and material changes. However, the modifications always lead to a reduction of the total cooling power. In conclusion, the simulation results reveal that design flexibility is possible, but currently the studied design variants have a lower cooling capacity compared to the solely functionally designed adsorber.

How to Cite

Greiner, A., Böckmann, O., Weber, S., Ostermann, M., & Schaefer, M. (2022). CoolSkin: A Novel Façade Design for Sustainable Solar Cooling by Adsorption. Journal of Facade Design and Engineering, 10(2), 39–56.





Alexopoulos, S., & Kalogirou, S. A. (Eds.). (2022). Solar Thermal Energy. New York, NY: Springer US.

Badescu, V., Gueymard, C. A., Cheval, S., Oprea, C., Baciu, M., Dumitrescu, A., … Rada, C. (2013). Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky. Theoretical and Applied Climatology, 111(3–4), 379–399.

Böckmann, O., Mamullaku, D., & Schäfer, M. (2022). Modeling and simulation of a façade-integrated adsorption system for solar cooling of lightweight buildings.

Buker, M. S., & Riffat, S. B. (2015). Building integrated solar thermal collectors – A review. Renewable and Sustainable Energy Reviews, 51, 327–346.

Datentabelle Floatglas Eurowhite [Firmen Homepage]. (2022). Retrieved May 26, 2022, from Glastroesch website:

DIN V 18599-2. (2018). DIN V 18599-2 (2018-09-00) Energetische Bewertung von Gebäuden—Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung—Teil 2: Nutzenergiebedarf für Heizen und Kühlen von Gebäudezonen. (Energy evaluation of buildings - Calculation of useful, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting) Beuth Verlag GmbH.

Giebeler, G., Fisch, R., Krause, H., Musso, F., Petzinka, K.-H., Rudolphi, A., & Lenzen, S. (2008). Atlas Sanierung: Instandhaltung, Umbau, Ergänzung (Atlas renovation: maintenance, conversion, addition) (1. Aufl). Basel Berlin: Birkhäuser.

Hanse Handels Haus GmbH. (2021, November 9). Retrieved August 17, 2022, from

Hülsmeier, F., Heller, A., Huth, S., Knechtges, S., & Reise, J. (2017). SOLARSHELL- Die parametrisch optimierte Fassade als Energiequelle (SOLARSHELL- The parametrically optimized facade as an energy source) (p. 105) [Abschlussbericht]. Leipzig: Hochschule für Technik, Wirtschaft und Kultur Leipzig. Retrieved from Hochschule für Technik, Wirtschaft und Kultur Leipzig website:

IEA. (2021). Cooling. Retrieved August 9, 2022, from

Kasper, B.-R., & Heidler, K. (Eds.). (2011). Solarthermische Anlagen: Leitfaden für das SHK-, Elektro- und Dechdeckerhandwerk, für Fachplaner, Architekten, Bauherren und Weiterbildungsinstitutionen (Solar thermal systems: Guide for the sanitary, heating and air-conditioning, electrical and plumbing trades, for specialist planners, architects, builders and further education institutions) (9. Aufl., überarb. Neuaufl.). Berlin and Frankfurt, Main: DGS Landesverband Berlin Brandenburg and VWEW Energieverl.

Klaiber, D., Fröhlich, T., & Vietor, T. (2019). Strategies for function integration in engineering design: From differential design to function adoption. Procedia CIRP, 84, 599–604.

Klett, Y. (2013). Auslegung multifunktionaler isometrischer Faltstrukturen für den technischen Einsatz (Design of multifunctional isometric folding structures for technical applications) (1. Aufl). München: Verl. Dr. Hut.

Knippers, J., Cremers, J., Gabler, M., Lienhard, J., Cremers, J., & Institut für Internationale Architektur-Dokumentation (Eds.). (2010). Atlas Kunststoffe + Membranen: Werkstoffe und Halbzeuge, Formfindung und Konstruktion (Atlas Plastics + Membranes: materials and semi-finished products, mold finding and design) (1. Aufl). München: Inst. f. Internat. Architektur-Dokumentation.

Mostapha Sadeghipour Roudsari. (2022). Honeybee · Honeybee Primer [GitBook]. Retrieved April 13, 2022, from

Mostapha Sadeghipour Roudsari & Michelle Pak. (2013). Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. Presented at the 13th Conference of International Building Performance Simulation Association, Chambery. Chambery. Retrieved from

Munari Probst, M. C., & Roecker, C. (2019). Criteria and policies to master the visual impact of solar systems in urban environments: The LESO-QSV method. Solar Energy, 184, 672–687.

Oei, M., Klett, Y., Harder, N., Flemming, D., & Sawodny, O. (2019). Modelling the Flow and Heat Transfer Characteristics of Perforated Foldcore Sandwich Composites for Application in Room Air Conditioning. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 1269–1274. Vancouver, BC, Canada: IEEE.

Prieto, A., Knaack, U., Auer, T., & Klein, T. (2017a). Solar coolfaçades: Framework for the integration of solar cooling technologies in the building envelope. Energy, 137, 353–368.

Prieto, A., Knaack, U., Auer, T., & Klein, T. (2017b). Solar façades—Main barriers for widespread façade integration of solar technologies. Journal of Façade Design and Engineering, 51-62 Pages.

Prieto, A., & Oldenhave, M. (2021). What makes a façade beautiful? Journal of Façade Design and Engineering, 21-46 Pages.

Rutten, D. (2013). Galapagos: On the Logic and Limitations of Generic Solvers. Architectural Design, 83(2), 132–135.

V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, … Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). (2021). IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Summary for Policymakers]. Switzerland. Retrieved from

VDI 2078. (2015). VDI 2078—Calculation of thermal loads and room temperatures (design cooling load and annual simulation). Beuth Verlag GmbH.

VDI 2221 (Ed.). (2019). VDI 2221—Entwicklung technischer Produkte und Systeme Modell der Produktentwicklung (Design of technical products and systems Model of product design). Beuth Verlag GmbH.