Modelling of active solar building envelopes for cost-effective evaluation

Authors

  • Christoph Maurer Fraunhofer Institute for Solar Energy Systems
  • Tilmann E. Kuhn Fraunhofer Institute for Solar Energy Systems

Downloads

DOI:

https://doi.org/10.7480/jfde.2017.2.1740

Keywords:

solar building envelopes, building-integrated solar thermal (BIST), building-integrated photovoltaics (BIPV), building-integrated solar systems (BISS), solar architecture

Abstract

Active building envelopes have provided cost reductions of 40% compared to the separate installation of solar collectors on a building envelope. However, solar building envelopes are more complex than conventional building envelopes due to their additional solar function. Firstly, the paper explains this complexity before describing methods of handling it. The focus of the simulation models is to obtain high levels of accuracy at low costs. From the development of innovative solar envelopes to the general planning and construction of solar architecture, this paper provides seven recommendations to optimize the cost-benefit ratio of simulations of active building envelopes.

How to Cite

Maurer, C., & Kuhn, T. E. (2017). Modelling of active solar building envelopes for cost-effective evaluation. Journal of Facade Design and Engineering, 5(2), 59–66. https://doi.org/10.7480/jfde.2017.2.1740

Published

2017-12-30

References

Cooper, P. I., & Dunkle, R. V. (1980). A non-linear flat-plate collector model. Solar Energy, 26(2), 133–140. doi:10.1016/0038-092X(81)90076-1

Hauer, M., & Streicher, W. (2013). Gebäudegekoppelte Simulation fassadenintegrierter Kollektoren mit TRNSYS. OTTI - 23. Symposium Thermische Solarenergie.

Heydenreich, W., Müller, B., & Reise, C. (2008). Describing the World with three Parameters: A new Approach to PV Module Power Modelling. 23rd European PV Solar Energy Conference and Exhibition (EU PVSEC), 2786–2789. doi:10.4229/23rdEUPVSEC2008-4DO.9.4

ISO 9806 (2013): International Organization for Standardization.

Quesada, G., Rousse, D., Dutil, Y., Badache, M., & Hallé, S. (2012a). A comprehensive review of solar facades. Opaque solar facades. Renewable and Sustainable Energy Reviews, 16(5), 2820–2832. doi:10.1016/j.rser.2012.01.078

Quesada, G., Rousse, D., Dutil, Y., Badache, M., & Hallé, S. (2012b). A comprehensive review of solar facades. Transparent and translucent solar facades. Renewable and Sustainable Energy Reviews, 16(5), 2643–2651. doi:10.1016/j.rser.2012.02.059

Saelens, D., Roels, S., & Hens, H. (2008). Strategies to improve the energy performance of multiple-skin facades. Building and Environment, 43(4), 638–650. doi:10.1016/j.buildenv.2006.06.024

Saelens, D. (2002). Energy performance assessment of single storey multiple-skin facades (Ph.D. thesis). Katholieke Universiteit Leuven, Leuven. Retrieved from https://bwk.kuleuven.be/bwf/PhDs/PhDSaelens

Sprenger, W. (2013). Electricity yield simulation of complex BIPV systems. Stuttgart: Fraunhofer-Verlag.