Modelling Envelope Components Integrating Phase Change Materials (PCMs) with Whole- Building Energy Simulation Tools: a State of the Art

Authors

  • Albert Castell Department of Computer Science and Industrial Engineering, University of Lleida http://orcid.org/0000-0002-3339-5980
  • Marc Medrano Department of Computer Science and Industrial Engineering, University of Lleida http://orcid.org/0000-0001-5734-6107
  • Francesco Goia Department of Architecture and Technology, Faculty of Architecture and Design, Norwegian University of Science and Technology, Trondheim

Downloads

DOI:

https://doi.org/10.7480/jfde.2018.3.2572

Keywords:

Phase Change Materials, Building Envelope, Modelling, Simulation

Abstract

Building envelope systems that integrate Phase Change Materials (PCMs) are solutions aimed at increasing the thermal energy storage potential of the building envelope while keeping its mass reasonably low. Building envelope components with PCMs can be either opaque or transparent and can be based on different types of PCMs and integration methods. In opposition to conventional building components, these elements present thermal and optical properties that are highly non-linear and depend to a great extent on the boundary conditions. Such a characteristic requires the system development and optimisation process during the design phase to be carried out with particular care in order to achieve the desired performance. In this paper, a review of the existing modelling capabilities of different building energy simulation (BES) tools for PCM-based envelope components is reported, and the main challenges associated with the modelling and simulation of these systems through the most popular BES tools (among them, EnergyPlus, IDA-ICE, TRNSYS, IES-VE, and ESP-r) are highlighted. The aim of this paper is to summarise the evidence found in the literature of the latest
development in the successful use of BES to replicate the thermal and optical behaviour of opaque and transparent components integrating PCMs, in order to provide the community of professionals with an overview of the tools available and their limitations.

How to Cite

Castell, A., Medrano, M., & Goia, F. (2018). Modelling Envelope Components Integrating Phase Change Materials (PCMs) with Whole- Building Energy Simulation Tools: a State of the Art. Journal of Facade Design and Engineering, 6(3), 132–148. https://doi.org/10.7480/jfde.2018.3.2572

Published

2018-11-26

References

Ahmad, M., Bontemps, A., Sallée, H., & Quenard, D. (2006). Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy and Buildings 38, pp.673–681.

Ahmed, A., Mateo-Garcia, M., McGough, D., Caratella, K., & Ure, Z. (2018). Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building. E3S Web of Conferences 32, 01001, 1-7. doi: 10.1051/e3sconf/20183201001

Alexides, V., & Solomon, A.D. (1993). Mathematical Modeling of Melting and Freezing Processes. Washington: Hemisphere Publishing Corporation, p. 47.

Al-Saadi, S.N., & Zhai, Z. (2015). Systematic evaluation of mathematical methods and numerical schemes for modeling PCM-enhanced building enclosure. Energy and Buildings 92, pp.374–388.

Al-Saadi, S.N., & Zhai, Z. (2015). A new validated TRNSYS module for simulating latent heat storage walls. Energy and Buildings 109, pp.274–290.

Andersen, M., Roecker, C., & Scartezzini, J. L. (2005). Design of a time-efficient video-goniophotometer combining bidirectional functions assessment for transmission and reflection. Solar Energy Materials and Solar Cells 88(1), 97-118. Doi: 10.1016/j.solmat.2004.10.009

Barbour, J.P., & Hittle, D.C. (2006). Modeling Phase Change Materials With Conduction Transfer Functions for Passive Solar Applications. Transactions of the ASME Vol. 128, February 2006.

Bianco, L., Cascone, Y., Goia, F., Perino, M., & Serra, V. (2017a). Responsive glazing systems: Characterisation methods and winter performance. Solar Energy, 155, pp.372–387.

Bianco, L., Cascone, Y., Goia, F., Perino, M., & Serra, V. (2017b). Responsive glazing systems: Characterisation methods, summer performance and implications on thermal comfort. Solar Energy, 158, pp.819–836.

Bionda, D., Kräuchi, P., Plüss, I., & Schröcker, M. (2015). Simulation of the thermal performance of translucent phase change materials and whole-building energy implications. Proceedings of 10th Conference on Advanced Building Skins. doi: 10.13140/RG.2.1.1729.4806

Bony, J., & Citherlet, S. (2007). Numerical model and experimental validation of heat storage with phase change materials. Energy and Buildings, 39(10), pp.1065-1072.

Cabeza, L.F., Castell, A., Barreneche, C., de Gracia, A., & Fernández, A.I. (2011). Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 15, pp.1675–1695. doi:10.1016/j.rser.2010.11.018.

Cabeza, L.F. (Ed.) (2015) Advances in Thermal Energy Storage Systems. Methods and Applications. Woodhead Publishing. United Kingdom. ISBN: 978-1-78242-088-0.

Cao, S., Gustavsen, A., Uvsløkk, S., Jelle, B.P., Gilbert, J., & Maunuksela, J. (2010). The effect of wall-integrated phase change material panels on the indoor air and wall temperature - Hot box experiments, In: Zero emission buildings - Proceedings of renewable energy conference 2010. Trondheim, Norway. p. 15-26.

Cao, S. (2010) State of the Art Thermal Energy Storage Solutions for High Performance Building. Department of Physics, University of Jyväskylä, Finland,2010.

Cornaro, C., Pierro, M., Puggioni, V.A., & Roncarati, D. (2017). Outdoor Characterization of Phase Change Materials and Assessment of Their Energy Saving Potential to Reach NZEB. Buildings 7(3), p.55. doi: 10.3390/buildings7030055

Cornaro, C., Pierro, M., Roncati, D., & Puggioni, V. (2018). Validation of a PCM Simulation Tool in IDA ICE Dynamic Building Simulation Software Using Experimental Data from Solar Test Boxes. Proceedings of Building Simulation Application (BSA) 2017. Bolzano University Press, Bolzano, pp.159-166.

de Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Álvarez, S., & Cabeza, L.F. (2013). Thermal analysis of a ventilated facade with PCM for cooling Applications. Energy and Buildings 65, pp.508–515. doi.org/10.1016/j.enbuild.2013.06.032.

de Gracia, A., Navarro, L., Castell, A., & Cabeza, L.F. (2015a). Energy performance of a ventilated double skin facade with PCM under different climates. Energy and Buildings 91, pp.37–42. doi.org/10.1016/j.enbuild.2015.01.011.

de Gracia, A., Fernández, C., Castell, A., Mateu, C., & Cabeza, L.F. (2015b). Control of a PCM ventilated facade using reinforcement learning techniques. Energy and Buildings 106, pp.234–242. doi.org/10.1016/j.enbuild.2015.06.045.

Delcroix, B., Kummert, M., & Daoud, A. (2017). Development and numerical validation of a new model for walls with phase change materials implemented in TRNSYS. Journal of Building Performance Simulation 10 (4), pp.422-437.

Dentel, A., & Stephan, W. (2010, December). Thermal comfort in rooms with active PCM constructions. 8th International Conference on System Simulation Buildings, Liege pp.13-15.

Dolado, P., Lázaro, A., Marín, J.M., & Zalba, B. (2011). Characterisation of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation, Energy Conversion and Management 52 (4), pp.1890-1907. doi.org/10.1016/j.enconman.2010.11.017.

Elarga, H., Goia, F., Zarrella, A., Dal Monte, A., & Benini, E. (2016). Thermal and electrical performance of an integrated PV-PCM system in double skin façades: A numerical study. Solar Energy 136, pp.112-124.

Elarga, H., Dal Monte, A., Andersen, R.K., & Benini, E. (2017). PV-PCM integration in glazed building. Co-simulation and genetic optimization study. Building and Environment 126, pp.161-175

EnergyPlus (2015). External Interface(s) Application Guide.

EnergyPlus (2018). Engineering Reference (v. 8.9).

Fallahi, A., Shukla, N., & Kosny, J. (2012) Numerical thermal performance analysis of PCMs integrated with residential attics. Fifth National Conference of IBPSA-USA, Wisconsin.

Fantucci, S., Goia, F., Perino, M., & Serra, V. (2018). Sinusoidal response measurement procedure for thermal performance assessment of PCM by means of Dynamic Heat Flow Meter Apparatus. Submitted for publication in Energy and Buildings.

Favoino, F. (2015). Assessing the performance of an advanced integrated facade by means of simulation: The ACTRESS facade case study. Journal of Facade Design and Engineering 3, pp.105–127. doi: 10.3233/FDE-150038

Geissler, A. (2008). SPMCMP56 subroutine in ESP-r Source Standard Code (software code).

Ghoneim, A.A., Klein, S.A., & Duffie, J.A. (1991). Analysis of collector-storage building walls using phase-change-materials. Solar Energy Vol. 47, No. 3, pp. 237-242.

Giovannini, L., Goia, F., Lo Verso, V.R.M., & Serra, V. (2017). Phase Change Materials in glazing: implications on light distribution and visual comfort. Energy Procedia 111, pp.357–366

Goia, F., Perino, M., & Haase, M. (2012). A numerical model to evaluate the thermal behaviour of PCM glazing system configurations. Energy and Buildings 54, 141–153

Goia, F., Perino, M., & Serra, V. (2014). Experimental analysis of the energy performance of a full-scale PCM glazing prototype. Solar Energy 100, pp.217–233.

Goia, F., Zinzi, M., Carnielo, E., & Serra, V. (2015). Spectral and angular solar properties of a PCM-filled double glazing unit. Energy and Buildings 87, pp.302–312.

Goia, F., Chaudhary, G., & Fantucci, S. (2018). Modeling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components. Energy and Buildings 174, pp.54–67.

Gowreesunker, B.L., Stankovic, S.B., Tassou, S.A., & Kyriacou, P.A. (2013). Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit. Energy and Buildings 61, pp.239–249.

Grynning, S., Goia, F., Rognvik, E., & Time, B. (2013). Possibilities for characterization of a PCM window system using large scale measurements. International Journal of Sustainable Built Environment 2, pp.56–64.

Günther, E., Mehling, H., & Hiebler, S. (2007). Modeling of subcooling and solidification of phase change materials. Modelling Simulation in Material Science and Engineering, 15(8), pp.879-892.

Haavi, T., Gustavsen, A., Cao, S., Uvsløkk, S. & Jelle, B.P. (2010). Numerical simulations of a well-insulated wall assembly with integrated phase change material panels - Comparison with hot box experiments, In: The international conference on sustainable systems and the environment; 2011. Sharjah, Sharjah, United Arab Emirates.

Haghighat, F., Yu, Z., Inard, C., Michaux, G., Kuznik, F., Johannes, K., Virgone, J., Barzin, R., Farid, M., Bastani, A., Stathopoulos, N., Mankibi, M. E., Nkwetta, D. N., Moreau, A., Vouillamoz, P-E., Castell, A., Adl-Zarrabi, B. (2013). Annex 23: Energy storage in buildings of the future - Applying Energy Storage in Ultra-low Energy Buildings. Paris, France: International Energy Agency.

Heim, D., & Clarke, J.A. (2004). Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r. Energy and Buildings 36, pp.795–805.

Heim, D., & Wieprzkowicz, A. (2016). Positioning of an Isothermal Heat Storage Layer in a Building Wall Exposed to the External Environment. Journal of Building Performance Simulation 9 (5), pp. 542–554.

Hensen, J.L.M. (1999). A comparison of coupled and de-coupled solutions for temperature and air flow in a building. ASHRAE Transactions 105 (2), pp.962–969.

Hoffmann, S. (2006). Numerische und experimentelle Untersuchung von Phasenübergangsmaterialien

zur Reduktion hoher sommerlicher Raumtemperaturen [Numerical and experimental investigation on phase change materials to reduce high indoor temperatures during summer]. (Doctoral thesis) Bauhaus-Universität, Weimar, Germany.

Hu, H., & Argyropoulos, S.A. (1996). Mathematical modelling of solidification and melting: a review. Modelling Simulation Material Science and Engineering 4, pp.371–396.

Ibáñez, M., Lázaro, A., Zalba, B., & Cabeza, L.F. (2005). An approach to the simulation of PCMs in building applications using TRNSYS. Applied Thermal Engineering 25, pp.1796–1807.

Ishimaru, A. (1978). Wave propagation and scattering in random media. In: Single Scattering and Transport Theory, 1. California, USA: Academic Press.

Johannes, K., Virgone, J., Kuznik, F., Wang, X., Haavi, T., & Fraisse, G. (2011). Annex 23: Applying Energy Storage in Buildings of the Future - Development of Sustainable Energy Storage Designs for a variety of Ultra-low energy building thermal, phase change materials and electrical storage options. Paris, France: International Energy Agency.

Jokisalo, J., Lamberg, P., & Sirén, K. (2000). Thermal simulation of PCM structures with TRNSYS. Stuttgart, Germany: Terrastock 2000.

Jones, R.W., Balcomb, J.D., Kosiewicz, C.E., Lazarus, G.S., McFarland, R.D., & Wray, W.O. (1982). Passive solar design handbook. Volume 3: Passive solar design analysis. Boulder, CO: U.S. Department of Energy ASES,

Kendrick, C., & Walliman, N. (2007). Removing unwanted heat in lightweight buildings using phase change materials in building components: Simulation modelling for PCM plasterboard. Architectural Science Review 50(3), pp.265-273.

Koschenz, M., Lehmann, B. (2004). Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy and Buildings 36, pp.567–578.

Kośny, J. (2008). Field Testing of Cellulose Fiber Insulation Enhanced with Phase Change Material‖. Oak Ridge National Laboratory report- ORNL/TM-2007/186, September 2008.

Kośny, J., Kossecka, E., & Yarbrough, D. W. (2009). Use of a Heat Flow Meter to Determine Active PCM Content in an Insulation. Proceedings of the 2009 International Thermal Conductivity Conference (ITCC) and the International Thermal Expansion Symposium (ITES) – August 29 - September 2, 2009 Pittsburgh, PA, USA.

Kośny, J., Kossecka, E., Brzezinski, A., Tleoubaev, A., & Yarbrough, D. (2011). Numerical and Experimental Thermal Analysis of PCM-Enhanced Insulations. International Thermal Conductivity Conference (ITCC) - June 26 - 30, 2011 Saguenay, QC, Canada.

Kośny, J. (2015). PCM-Enhanced Building Components. An Application of Phase Change Materials in Building Envelopes and Internal Structures. Springer International Publishing, doi:10.1007/978-3-319-14286-9.

Kuznik, F., Virgone, J., & Johannes, K. (2010). Development and validation of a new Trnsys Type for the simulation of external building walls containing PCM. Energy and Buildings 42(7), 1004-1009. doi.org/10.1016/j.enbuild.2010.01.012.

Lamberg, P., Jokisalo, J., & Sirén, K. (2000). The effects on indoor comfort when using phase change materials with building concrete products. Proceedings of Healthy Buildings 2000, Vol. 2, pp. 751–756, SIY Indoor Air Information OY.

Li, D., Ma, T., Liu, C., Zheng, Y., Wang, Z., & Liu, X. (2016). Thermal performance of a PCM-filled double glazing unit with different optical properties of phase change material. Energy and Buildings 119, pp.143–152.

Liu, C., Zhou, Y., Li, D., Meng, F., Zheng, Y., & Liu, X. (2016). Numerical analysis on thermal performance of a PCM-filled double glazing roof. Energy and Buildings 125, pp.267-275.

Lu, S., Liu, S., Huang, J., & Kong, X. (2014). Establishment and experimental verification of PCM room’s TRNSYS heat transfer model based on latent heat utilization ratio. Energy and Buildings 84, pp.287–298.

Manz, H., Egolf, P., Suter, P., & Goetzberger, A. (1997). TIM–PCM external wall system for solar space heating and daylighting. Solar Energy 61, pp.369–379.

McKellar, B.H.J., & Box, A.M. (1981). The scaling group of radiative transfer equation. Journal of Atmospherical Science 38, pp.1063–1068.

Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM, An up to date introduction into basics and applications, Berlin Heidelberg: Springer-Verlag.

Navarro, L., de Gracia, A., Colclough, S., Browne, M., McCormack, S.J., Griffiths, P., & Cabeza, L.F. (2016a). Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems. Renewable Energy 88, pp.526-547. doi. org/10.1016/j.renene.2015.11.040.

Navarro, L., de Gracia, A., Niall, D., Castell, A., Browne, M., McCormack, S.J., Griffiths, P., & Cabeza, L.F. (2016b). Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy 85, pp.1334-1356. doi.org/10.1016/j.renene.2015.06.064.

Padovani, R., Jensen, C., & Hes, D. (2010). Approach to thermal modelling innovative green building elements: Green roof and phase change plasterboard. AUBEA 2010 - Proceedings of the 2010 conference of the Australasian Universities Building Education Association, 2010, 1 (1), pp. A080, 1 - 17

Pedersen, C.O. (2007). Advanced zone simulation in EnergyPlus: Incorporation of variable properties and Phase Change Material (PCM) capability. Proceedings of Building Simulation 2007.

Plüss, I., Kräuchi, P., Bionda, D., Schröcker, M., Felsenstein, S., Zweifel, G. (2014). Modellbildung eines Phasenwechsel-fassadenelements in IDA-ICE [Modelling of a facade element with phase change in IDA-ICE]. Proceedings of BAUSim: Fifth German-Austrian IBPSA Conference RWTH Aachen University, 1166, p.1-5.

Schossig, P., Henning, H.M., Gschwander, S., & Haussmann, T. (2005). Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials & Solar Cells 89, pp.297–306.

Schranzhofer, H., Puschnig, P., Heinz, A., & Streicher, W. (2006). Validation of a TRNSYS simulation model for PCM energy storages and PCM wall construction elements. ECOSTOCK 2006 - 10th International Conference on Thermal Energy Storage. Pomona, NJ, USA.

Silva, T., Vicente, R., & Rodrigues, F. (2016) Literature review on the use of phase change materials in glazing and shading solutions. Renew. Sustain. Energy Rev. 53, 515–535.

Stritih, U., & Novak, P. (1996). Solar heat storage wall for building ventilation. Renewable Energy 8 (1-4), pp.268-271.

Tabares-Velasco, P.C., Christensen, C., Bianchi, M. (2012). Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment 54, pp.186-196. doi.org/10.1016/j.buildenv.2012.02.019.

Vigna, I., Bianco, L., Goia, F., & Serra, V. (2018). Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis. Energies 11, p.111. doi:10.3390/en11010111

Voller, V.R. (1997). An overview of numerical methods for solving phase change problems, in Minkowycz, W.J. and Sparrow, E.M. (Eds), Advances in Numerical Heat Transfer, Vol. 1, Basingstoke: Taylor & Francis,

Weinläder, H. (2003). Optische Charakterisierung von Latentwärmespeichermaterialien zur Tageslichtnutzung

[Optical characterization of phase change materials for daylighting]. (Dissertation) Julius-Maximilians-Universität, Würzburg, Germany.

Weinläder, H., Beck, A., & Fricke, J. (2005). PCM-facade-panel for daylighting and room heating. Solar Energy 78, pp.177–186.