Analysis of Heating Effects and Deformations for a STAF Panel with a Coupled CFD and FEM Simulation Method

Authors

  • Daniel Brandl Graz University of Technology/ Institute of Thermal Engineering
  • Helmut Schober Graz University of Technology/ Institute of Building Construction
  • Christoph Hochenauer Graz University of Technology/ Institute of Thermal Engineering

Downloads

DOI:

https://doi.org/10.7480/jfde.2018.3.2567

Keywords:

Solar Thermal Activated Façades (STAF) Panel, Computational Fluid Dynamics (CFD), Finite Element Method (FEM), outdoor measurements

Abstract

Conventional sandwich panels are one of the cheapest and easiest solutions for forming the thermal building envelope of industrial buildings. They are pre-fabricated façade elements, of which millions of square metres have been produced and mounted every year. There is great potential to reduce the consumption of fossil fuels and CO2 emissions through the solar thermal activation of such a sandwich panel. In the course of the research project ABS-Network SIAT 125, a Solar Thermal Activated Façade (STAF) panel was designed which is to be optimised both thermally and structurally. This study shows a first version of a so-called ‘one way coupled’ thermal and structural analysis of a conventional sandwich panel compared to the STAF panel. For this purpose, the numerical methods of Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) are used  together in one simulation environment. Furthermore, results from an outdoor test facility are presented where a first version of a STAF panel is tested under real climate conditions. The CFD model was positively evaluated by comparing measured and computed temperatures.

How to Cite

Brandl, D., Schober, H., & Hochenauer, C. (2018). Analysis of Heating Effects and Deformations for a STAF Panel with a Coupled CFD and FEM Simulation Method. Journal of Facade Design and Engineering, 6(3), 116–131. https://doi.org/10.7480/jfde.2018.3.2567

Published

2018-11-26

References

Ahmed, S., Leithner, R., Kosyna, G., & Wulff, D. (2009). Increasing reliability using FEM–CFD. World Pumps, 509, pp.35-39.

BKI Baukosteninformationszentrum [Construction Costs Information Center] (2018). BKI Baukosten Neubau 2018 - Teil 1-3 [Construction costs of new buildings 2018 - part 1-3] : Statistische Kostenkennwerte Gebäude, Positionen und Bauelemente [Statistical cost factors of buildings, positions and parts]. Stuttgart: BKI 2018.

Brandl, D., Mach, T., Grobbauer, M., Hochenauer, C. (2014). Analysis of ventilation effects and the thermal behaviour of multifunctional façade elements with 3D CFD models. Energy and Buildings, 85, pp.305-320.

Brandl, D., Mach, T., Kaltenecker, P., Sterrer, R., Neururer, C., Treberspurg, M., & Hochenauer, C. (2015). CFD assessment of a solar honeycomb (SHC) façade element with integrated PV cells. Solar Energy, 118, pp.155-174.

Brandl, D., Mach, T., & Hochenauer, C. (2016). Analysis of the transient thermal behaviour of a solar honeycomb (SHC) façade element with and without integrated PV cells. Solar Energy, 123, pp.1-16.

Brötje, S., Kirchner, M., & Giovannetti, F. (2018). Performance and heat transfer analysis of uncovered photovoltaic-thermal collectors with detachable compound. Solar Energy, 170, pp.406-418.

Brucha Ges.m.b.H. (1948). Retrieved from http://www.brucha.com/

Del Col, D., Padovan, A., Bortolato, M., Dai Prè, M., & Zambolin, E. (2013). Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy, 58, pp.258-269.

Duffie, J. & Beckman, W. (1991). Solar engineering of thermal processes. New York: Wiley-Interscience Publication, John Wiley & Sons, Inc.

Ebrahimi, H., Someh, L. K., Norato, J., & Vaziri, A. (2018). Blast-resilience of honeycomb sandwich panels. International Journal of Mechanical Sciences, 144, pp.1-9.

Eizadjou, M., Manesh, H. D., & Janghorban, K. (2009). Mechanism of warm and cold roll bonding of aluminum alloy strips. Materials & Design, 30, 10, pp.4156-4161.

EN 14509 (2013). Self-supporting double skin metal faced insulating panels – Factory made products – Specifications.

Feenstra, J.A., Hofmeyer, H., Van Herpen, R.A.P., & Mahendran, M. (2018). Automated two-way coupling of CFD fire simulations to thermomechanical FE analyses at the overall structural level, Fire Safety Journal, 96, pp.165-175.

Fritsch, A., Uhlig, R., Marocco, L., Frantz, C., Flesch, R., & Hoffschmidt, B. (2017). A comparison between transient CFD and FEM simulations of solar central receiver tubes using molten salt and liquid metals, Solar Energy, 155, 2017, pp.259-266.

Haseli, M., Layeghi, M., & Hosseinabadi, H. Z. (2018). Characterization of blockboard and battenboard sandwich panels from date palm waste trunks. Measurement, 124, pp.329-337.

Hashemi, S. J., Razzaghi, J., Moghadam, A. S., & Lourenço, P. B. (2018). Cyclic testing of steel frames infilled with concrete sandwich panels. Archives of Civil and Mechanical Engineering, 18, 2, pp.557-572.

Hermes, C.J.L., Melo, C., & Negrão, C.O.R. (2008). A numerical simulation model for plate-type, roll-bond evaporators. International Journal of Refrigeration, 31, 2, pp.335-347.

Hörtenhuber, M. (2017). Konstruktion, Aufbau und Inbetriebnahme eines Versuchsstandes zur Ermittlung des thermischen Verhaltens eines integralen Fassadenelementes [Construction, assembly and commissioning of an experimental test stand for the analysis of the thermal behaviour of an integral façade element]. Graz: Technische Universität Graz

IC Market Tracking (2016). Sandwichpaneele in Europa [Sandwich panels in europe]. Retrieved from https://www.interconnectionconsulting.com/de/industry/119

Kim, S., Choi, J., Park, J., Choi, Y., & Lee, J. (2013). A coupled CFD-FEM analysis on the safety injection subjected to thermal stratification. Nuclear Engineering and Technology, 45, 2, pp.237-248.

Koschade, R. (2011). Sandwichbauweise: Konstruktion, Systembauteile, Ökologie (Detail Spezial) [Sandwich construction: construction, system components, ecology (detail special)], Inst. f. Int. Architektur Dokumentation [Institute of int. architecture documentation].

Launder, B.E. & Spalding, D.B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 2, pp.269-289.

Li, Z. Zheng, Z., Yu, J., & Lu, F. (2017). Deformation and perforation of sandwich panels with aluminum-foam core at elevated temperatures, International Journal of Impact Engineering, 109, pp.366-377.

Liang, R., Luo, Y., & Li, Z. (2018). The effect of humping on residual stress and distortion in high-speed laser welding using coupled CFD-FEM model, Optics & Laser Technology, 104, pp.201-205.

Malendowski, M., & Glema, A. (2017). Development and Implementation of Coupling Method for CFD-FEM Analyses of Steel Structures in Natural Fire, Procedia Engineering, 172, pp.692-700.

Missoum, S., Lacaze, S, Amabili, M., & Alijani, F., (2017). Identification of material properties of composite sandwich panels under geometric uncertainty. Composite Structures, 179, pp.695-704.

Peksen, M. (2015). 3D CFD/FEM analysis of thermomechanical long-term behaviour in SOFCs: Furnace operation with different fuel gases. International Journal of Hydrogen Energy, 40, 36, pp.12362-12369.

Quintana, J. M., & Mower, T. M. (2017). Thermomechanical behavior of sandwich panels with graphitic-foam cores. Materials & Design, 135, pp.411-422.

Ravi, P. S., Krishnaiah, A., Akella,S., & Azizuddin, M. (2015). Evaluation of Inside Heat Transfer Coefficient of Roll Bond Evaporator for Room Air Conditioner. International Journal of Innovative Research in Science, Engineering and Technology, 4, 5, pp.3378-3384.

Righetti, G., Zilio, C., & Longo, G. A. (2014). Experimental Analysis of R134a and R1234ze (E)Flow Boiling Inside a Roll Bond Evaporator, International Refrigeration and Air Conditioning Conference, Paper 1404.

Schober, H. & Brandl, D. (2016). Integrale Gebäudehüllen - Entwicklung eines solarthermisch aktivierten, multifunktionalen Fassadenpaneels [Integral building envelopes - Development of a solar thermally activated, multifunctional façade panel], Gleisdorf SOLAR 2016 - Internationale Konferenz für solares Heizen und Kühlen, Gleisdorf, Österreich.

Streicher, W. (2007). Sonnenergienutzung (Vorlesungsskriptum) [Use of solar energy (lecture script)], Institut für Wärmetechnik: Technische Universität Graz.

Sun, X., Wu, J., Dai, Y., & Wang, R. (2014). Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system, Applied Thermal Engineering, 66, 1–2, pp.571-579.

Talum d.d. (1942). Retrieved from http://www.talum.si/.

Yazdani Sarvestani, H. , Akbarzadeh, A.H., Niknam, H., & Hermenean, K. (2018). 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Composite Structures, 200, pp.886-909.

Yuan, W., Wang, J., Song, H., Ma, T., Wu, W., Li, J., & Huang, C. (2018). High-power laser resistance of filled sandwich panel with truss core: An experimental study. Composite Structures, 193, pp.53-62.

Zhang, Y., & Lu, T. (2017). Unsteady-state thermal stress and thermal deformation analysis for a pressurizer surge line subjected to thermal stratification based on a coupled CFD-FEM method. Annals of Nuclear Energy, 108, pp.253-267.