Design and Experimental Proof-of-concept of a Façade-integrated Solar Thermal Venetian Blind with Heat Pipes

Authors

Downloads

DOI:

https://doi.org/10.7480/jfde.2020.1.4796

Abstract

Solar thermal venetian blinds (STVB) pursue the goal of reducing the primary energy demand of buildings with highly transparent façades during operation. They can provide solar control and daylighting functions and at the same time function as a solar thermal collector. A technical overview of STVB based on a design parameter space, which can be used as guideline for the design of STVB, is presented. It is then applied to develop a first actual-size test sample of STVB. The design principle, based on heat pipes and a switchable thermal coupling for heat transfer between the slats and a header tube, allows the STVB to be tiltable and retractable. The key characteristics of the built STVB test sample are: (1) integrated in a double skin façade element; (2) conventional absorber sheet with diagonally mounted heat pipe; (3) switchable thermal coupling with mechanism using springs and solenoids; (4) a multi-port header tube. Outdoor measurements have been carried out and are discussed, demonstrating the technical feasibility of the concept. In the end, design choices for architects and planners for the STVB system and possible installation processes are presented, and recommendations for further developments are assessed.

How to Cite

Haeringer, S. F., Denz, P.-R., Vongsingha, P., Bueno, B., Kuhn, T. E., & Maurer, C. (2020). Design and Experimental Proof-of-concept of a Façade-integrated Solar Thermal Venetian Blind with Heat Pipes. Journal of Facade Design and Engineering, 8(1), 131–156. https://doi.org/10.7480/jfde.2020.1.4796

Published

2020-11-06

References

Abu-Zour, A. M., Riffat, S. B., & Gillott, M. (2006). New design of solar collector integrated into solar louvres for efficient heat

transfer. Applied Thermal Engineering, 26(16), 1876–1882.https://doi.org/10.1016/j.applthermaleng.2006.01.024

Angilletta, D. J. (1975). US4002159.

Bahrami, M., Yovanovich, M. M., & Culham, J. R. (2004). Thermal Joint Resistances of Conforming Rough Surfaces with Gas Filled Caps. Journal of Thermophysics and Heat Transfer, 18(3), 318–325. https://doi.org/10.2514/1.5480

Beucker, S. (2020). Auswertung von Produkt- und Vermarktungsoptionen für architektonisch integrierte Fassadenkollektoren im Projekt ArKol [Evaluation of product and marketing options for architecturally integrated façade collectors within the ArKol project]: Internal project report. Berlin.

Bezrodny, M. K., & Podgoretskii, V. M. (1994). Flooding and heat transfer limits in horizontal and inclined two-phase

thermosiphons. Experimental Thermal and Fluid Science, 9(3), 345–355. https://doi.org/10.1016/0894-1777(94)90037-X

Bittmann, M. (2006). DE 102006000668 B4.

Bläsi, B., Kroyer, T., Höhn, O., Wiese, M., Ferrara, C., Eitner, U., & Kuhn, T. E. (2017). Morpho Butterfly Inspired Coloured BIPV

Modules. Advance online publication. https://doi.org/10.4229/EUPVSEC20172017-6BV.3.70

Cappel, C., Kuhn, T. E., & Maurer, C. (2015). Research and development roadmap for façade-integrated solar thermal systems. Retrieved from http://publica.fraunhofer.de/documents/N-349494.html

Cappel, C., Streicher, W., Hauer, M., Lichtblau, F., Szuder, T., Kuhn, T. E., & Maurer, C. (2015). "

AktiFas" Fassadenintegrierte Solarthermie: Bestandsaufnahme und Entwicklung zukunftsfähiger Konzepte [“Aktifas” façade integrated solar thermal systems: review and development of future-proof concepts]: Final Project Report. Freiburg. Retrieved from Fraunhofer ISE website: http://publica.fraunhofer.de/dokumente/N-349495.html

Cruz Lopez, P. B. (2011). Solar Thermal Collector in Façades: Collecting Solar Thermal Energy for Heating and

Cooling Purposes (Master Thesis). TU Delft, Delft. Retrieved from http://repository.tudelft.nl/islandora/object/uuid:1cda81f7-c889-447b-9759-7b774cc7fece?collection=education

Denz, P.‑R. (2019). Solar Thermal Venetian Blinds. In International Energy Agency (Ed.), State-of-the-art and SWOT analysis of building integrated solar envelope systems: Deliverables A.1 and A.2 (pp. 93–95): IEA Solar Heating and Cooling Technology Collaboration Programme (IEA SHC). Retrieved from https://doi.org/10.18777/ieashc-task56-2019-0001

Denz, P.‑R., Maurer, C., Vongsingha, P., Haeringer, S. F., Hermann, M., Seifarth, H., & Morawietz, K. (2018). Solar Thermal Facade Systems – an interdisciplinary approach. In Advanced Building Skins Conference, Bern, Switzerland.

Denz, P.‑R., Vongsingha, P., Haeringer, S. F., Maurer, C., Hermann, M., Seifarth, H., & Morawietz, K. (2018, October). Solar thermal energy from opaque and semi-transparent façades – current results from R&D project ArKol. In Engineered Transparency 2018. Berlin: Ernst & Sohn.

DIN CERTCO (2015). Summary of EN 12975 Test Results, annex to Solar KEYMARK Certificate: Licence number: 011-7S1404 F. Berlin. Retrieved from https://www.dincertco.tuv.com/registrations/60072471?locale=en

Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). Hoboken: Wiley.

EnEV (2007). Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden

(Energieeinsparverordnung - EnEV) [German Energy Saving Regulations]: Bundesgesetzblatt Teil 1; Nr. 34, Seiten 1519 - 1563. Retrieved from http://www.gesetze-im-internet.de/enev_2007/index.html

Erfis GmbH. Erfitherm. Retrieved from http://www.erfis.de/ff/produkte/erfitherm/

Fraunhofer ISE (2018). Forschungsprojekt »Arkol« – Flexible Fassadenkollektoren für solare Architektur [Research project "Arkol" - Flexible façade collectors for solar architecture]: Demonstration video on YouTube. Retrieved from https://www.youtube.com/watch?v=6BlwtcDmkH8

Fuschillo, N. (1975). Semi-transparent solar collector window systems. Solar Energy, 17(3), 159–165. https://doi.org/10.1016/0038-092x(75)90054-7

Gratia, E., & Herde, A. de (2007a). Greenhouse effect in double-skin façade. Energy and Buildings, 39(2), 199–211. https://doi.org/10.1016/j.enbuild.2006.06.004

Gratia, E., & Herde, A. de (2007b). The most efficient position of shading devices in a double-skin façade. Energy and Buildings, 39(3), 364–373. https://doi.org/10.1016/j.enbuild.2006.09.001

Griesser AG. (n.d.). Metalunic. Retrieved from https://www.griesser.de/en/products/external-venetian-blinds/all-metal-external-venetian-blind/metalunic

Griesser AG (1979). CH635164A5.

Guardo, A., Egusquiza, M., Egusquiza, E., & Alavedra, P. (2015). Preliminary results on the assessment of using Venetian blinds as a solar thermal collector in double skin façades in Mediterranean climates. In 10th Energy Forum on Advanced Building Skins, Bern; Switzerland.

Haeringer, S. F., Abderrahman, I., Vongsingha, P., Camarena Covarrubias, S., Amann, U., Kuhn, T. E., … Maurer, C. (2017). Solar Thermal Venetian Blind - Development and Evaluation of a Switchable Thermal Coupling. In OTTI e.V. (Chair), 27. Symposium Thermische Solarenergie, Bad Staffelstein, Germany.

Haeringer, S. F., Abderrahman, I., Vongsingha, P., Kuhn, T. E., Denz, P.‑R., & Maurer, C. (2017). Solar Thermal Venetian Blinds – Transparency, User Comfort and Solar Energy in one! In Passive Low Energy Architecture (Chair), Proceedings of 33rd PLEA International Conference - Design to Thrive, Edinburgh, Scotland.

Haeringer, S. F., Delgado, A., Di Lauro, P., Vongsingha, P., Haidar, M., Panchal, K., . . . Maurer, C. (2018). Raumhohes Ganzglas-

Fassadenelement mit solarthermischer Jalousie. In Conexio GmbH (Chair), Symposium Solarthermie, Bad Staffelstein,

Germany.

Haeringer, S. F., Denz, P.‑R., Kuhn, T. E., & Maurer, C. (2019). Solar thermal venetian blind as synergetic and adaptive sun

protection device in double skin façades - Characterization via calorimetric measurements. In 14th Conference on Advanced Building Skins (pp. 282–291). Lucerne (Switzerland): Advanced Building Skins GmbH.

Haeringer, S. F., Denz, P.‑R., Vongsingha, P., Delgado, A., & Maurer, C. (2019). Arkol – Development and Testing of Solar Thermal Venetian Blinds. In T. Auer, U. Knaack, & J. Schneider (Eds.), Powerskin Conference: Proceedings (pp. 195–207). Delft: TU Delft Open. Retrieved from https://books.bk.tudelft.nl/index.php/press/catalog/book/isbn_9789463661256

Heiz, B. P. V., Pan, Z., Lautenschlager, G., Sirtl, C., Kraus, M., & Wondraczek, L. (2017). Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 4(3), 1600362. https://doi.org/10.1002/advs.201600362

Hippel, E. von (2005). Democratizing innovation. Cambridge: Creative Commons / The MIT Press. Retrieved from http://web.mit.edu/evhippel/www/democ1.htm

Horn, B., & Block, E. (2018). VISIONS: GLASS TECHNOLOGY LIVE - THE HUB @ GLASSTEC. Düsseldorf. Retrieved from Messe

Düsseldorf website: https://www.glasstec.de/de/glass_technology_ live/Visions_auf_glass_technology_live

InDeWag: Industrial Development of Water Flow Glazing Systems (2017). Retrieved from http://indewag.eu/

ISO 9806 (2013). Solar energy - Solar thermal collectors - Test methods (DIN EN ISO 9806:2014-06). (ISO, 9806): International

Organization for Standardization.

ISO 9806 (2017). Solar energy - Solar thermal collectors - Test methods (ISO 9806:2017). (ISO, 9806): International Organization for Standardization.

Jack, S., & Rockendorf, G. (2013). Wärmerohre in Sonnenkollektoren - Wärmetechnische Grundlagen und Bewertung sowie neue Ansätze für die Integration: Abschlussbericht zum Vorhaben (Heat pipes in solar collectors - Thermal engineering basics and evaluation as well as new approaches for integration: Final project report); Kurzbezeichnung: HP-Opt ; Laufzeit: 01.06.2010 - 31.05.2013. https://doi.org/10.2314/GBV:788667017

Jiang, S., Li, X., Lyu, W., & Yan, S. (2019). Numerical analysis on the load reduction of a pipe-embedded window with different water temperatures and structures under different climates. Science and Technology for the Built Environment, 25(9), 1187–1198. https://doi.org/10.1080/23744731.2019.1642094

Katsifaraki, A., Bueno, B., & Kuhn, T. E. (2017). A daylight optimized simulation-based shading controller for venetian blinds.

Building and Environment, 126, 207–220. https://doi.org/10.1016/j.buildenv.2017.10.003

Klein, T. (2013). Integral façade construction: Towards a new product architecture for curtain walls. Architecture and the built

environment.

Knaack, U., Bilow, M., Klein, T., & Auer, T. (2014). Façades: Principles of construction (Second and revised edition). Basel: Birkhäuser Verlag. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=852547

Kuhn, T. E. (2014). Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements. Energy and Buildings, 84, 388–402. https://doi.org/10.1016/j.enbuild.2014.08.021

Kuhn, T. E. (2017). State of the art of advanced solar control devices for buildings. Solar Energy. Advance online publication. https://doi.org/10.1016/j.solener.2016.12.044

Lang, U. (2007). Energieeffizienz durch selektiven Sonnenschutz [Energy efficiency through selective sun protection]. RTS

Magazin, 52.(2), 31–33. Retrieved from https://www.rts-magazin.de/heftarchiv/rts-magazin/2007/item/639-ausgabe-02-2007.html

Li, C., & Tang, H. (2020). Evaluation on year-round performance of double-circulation water-flow window. Renewable Energy, 150, 176–190. https://doi.org/10.1016/j.renene.2019.12.153

Li, L., Qu, M., & Peng, S. (2017). Performance evaluation of building integrated solar thermal shading system: Active solar energy usage. Renewable Energy, 109, 576–585. https://doi.org/10.1016/j.renene.2017.03.069

Li, Y., Darkwa, J., Kokogiannakis, G., & Su, W. (2019). Phase change material blind system for double skin façade integration: System development and thermal performance evaluation. Applied Energy, 252, 113376. https://doi.org/10.1016/j.apenergy.2019.113376

Luo, Y., Zhang, L., Wang, X., Xie, L., Liu, Z., Wu, J., . . . He, X. (2017). A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds. Applied Energy, 199, 281–293. https://doi.org/10.1016/j.apenergy.2017.05.026

Lutz, M. (2012). Die Closed-Cavity-Fassade. Stahlbau, 81(S1), 268–278. https://doi.org/10.1002/stab.201290070

Maurer, C., Amann, U., Di Lauro, P., Hanek, J., Fahr, S., Kramer, K., & Kuhn, T. E. (2015, March 31). "GWert-Tracker": Neues Verfahren zur Outdoor-Charakterisierung von Fassadenkollektoren und BIPV: Schlussbericht [“G-Value-Tracke”r: new method for outdoor characterisation of façade collectors and BIPV: final report]. Freiburg. Retrieved from Fraunhofer ISE website: http://publica.fraunhofer.de/dokumente/N-366874.html

Maurer, C., Cappel, C., & Kuhn, T. E. (2015). Methodology and first results of an R&D road map for façade-integrated solar thermal systems. Energy Procedia, 70, 704–708. https://doi.org/10.1016/j.egypro.2015.02.179

Maurer, C., Cappel, C., & Kuhn, T. E. (2017). Progress in building-integrated solar thermal systems. Solar Energy, 154, 158–186. https://doi.org/10.1016/j.solener.2017.05.065

Maurer, C., Gasnier, D., Pflug, T., Plešec, P., Hafner, J., Jordan, S., & Kuhn, T. E. (2014). First Measurement Results of a Pilot Building with Transparent Façade Collectors. Energy Procedia, 48, 1385–1392. https://doi.org/10.1016/j.egypro.2014.02.156

Maurer, C., & Kuhn, T. E. (2012). Variable g value of transparent façade collectors. Energy and Buildings, 51, 177–184. https://doi.org/10.1016/j.enbuild.2012.05.011

Mays, J. C. (2019, April 25). De Blasio’s ‘Ban’ on Glass and Steel Skyscrapers Isn’t a Ban at All. The New York Times. Retrieved from https://www.nytimes.com/2019/04/25/nyregion/glass-skyscraper-ban-nyc.html

Molter, P., Wolf, T., Reifer, M., & Auer, T. (2017). Integration of technology components in cladding systems. In T. Auer, U. Knaack, & J. Schneider (Eds.), Powerskin Conference: Proceedings (pp. 171–178). Delft: TU Delft Open.

Morawietz, K., Paul, T., & Schnabel, L. (2018). Experimental investigation of horizontal and slightly inclined closed two-phase

thermosyphons and heat pipes for solar façade integration. In Joint 19th International Heat Pipe Conference and the 13th

International Heat Pipe Symposium.

Morse, E. S. (1881). US246626.

Murray, S. (2013). Translucent building skins: Material innovations in modern and contemporary architecture. London: Routledge.

Palmero-Marrero, A. I., & Oliveira, A. C. (2006). Evaluation of a solar thermal system using building louvre shading devices. Solar Energy, 80(5), 545–554. https://doi.org/10.1016/j.solener.2005.04.003

Pierce, N. T. (1977). Massachusetts Institute of Technology US4143640 A.

Reay, D. A., Kew, P. A., & McGlen, R. J. (2014). Heat pipes: Theory, design and applications (Sixth edition). Amsterdam: Elsevier.

Robin, J.‑M. (2002). Jean-Marc Robin EP1376026B1.

Schenker Storen (n.d.). All-metal blinds GM 100. Retrieved from https://de.schenkerstoren.com/en/products/all-metal-blind-gm-100

Schiebler, B., Giovannetti, F., Schaffrath, W., & Jack, S. (2018). Kostengünstige und zuverlässige Solarsysteme durch neuartige Wärmerohr-Kollektoren: Abschlussbericht zum Vorhaben. Kurztitel: HP-Koll, Laufzeit: 01.09.2014-31.03.2018. Emmerthal. Retrieved from Institut für Solarenergieforschung Hameln (ISFH) website: https://www.tib.eu/de/suchen/id/TIBKAT%3A1048288684/Kosteng%C3%BCnstige-und-zuverl%C3%A4ssige-Solarsysteme-durch/

Shen, C., & Li, X. (2016). Thermal performance of double skin façade with built-in pipes utilizing evaporative cooling water in cooling season. Solar Energy, 137, 55–65. https://doi.org/10.1016/j.solener.2016.07.055

Siebert, J. (2018, June 4). Powered by Shade | Ingenieurbüro für Regenerative Energiesysteme Dipl.-Ing. (FH) Joachim Siebert. Retrieved from http://erneuerbare-energien-ostsachsen.de/index.php/ produkte/powered-by-shade

Stopper, J. (2018). FLUIDGLAS - Flüssigkeitsdurchströmte Fassadenelemente: Anwendbarkeit von flüssigkeitsdurchströmten,

transparenten Fassadenelementen zur Kontrolle der Energietransmission von Gebäuden in der Gebäudehülle (FLUIDGLAS – fluid flow through façade elements: usability of fluid flow through, transparent façade elements for energy transmission control of buildings within the building envelope). München: Universitätsbibliothek der TU München. Retrieved from http://nbn-resolving.de/urn/resolver.pl? urn:nbn:de:bvb:91-diss-20180425-1430706-1-4

Stopper, J. (2019). Fluidglass – The Energy Efficient Glass Façade. In T. Auer, U. Knaack, & J. Schneider (Eds.), Powerskin

Conference: Proceedings (pp. 223–233). Delft: TU Delft Open.

Stopper, J., Boeing, F., & Gstoehl, D. (2013). Fluid glass façade elements: Influences of dyeable liquids within the fluid glass façade. In 8th Energy Forum, Bressanone; Italy.

Velasco, A., Jiménez García, S., Guardo, A., Fontanals, A., & Egusquiza, M. (2017). Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Façades in Mediterranean Climates. Energies, 10(11), 1825. https://doi.org/ 10.3390/en10111825